Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/100260
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorJian, Aen_US
dc.creatorFeng, Ken_US
dc.creatorJia, Hen_US
dc.creatorZhang, Qen_US
dc.creatorSang, Sen_US
dc.creatorZhang, Xen_US
dc.date.accessioned2023-08-08T01:54:15Z-
dc.date.available2023-08-08T01:54:15Z-
dc.identifier.issn0169-4332en_US
dc.identifier.urihttp://hdl.handle.net/10397/100260-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2019 Elsevier B.V. All rights reserved.en_US
dc.rights© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Jian, A., Feng, K., Jia, H., Zhang, Q., Sang, S., & Zhang, X. (2019). Quantitative investigation of plasmonic hot-electron injection by KPFM. Applied Surface Science, 492, 644-650 is available at https://doi.org/10.1016/j.apsusc.2019.06.109.en_US
dc.subjectHot-electron injectionen_US
dc.subjectKelvin probe force microscopeen_US
dc.subjectPhotocatalysisen_US
dc.subjectSurface potentialen_US
dc.titleQuantitative investigation of plasmonic hot-electron injection by KPFMen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage644en_US
dc.identifier.epage650en_US
dc.identifier.volume492en_US
dc.identifier.doi10.1016/j.apsusc.2019.06.109en_US
dcterms.abstractHot-electron injection is widely used in plasmonic devices. However, it is still lack of a direct theoretical model for performance prediction. This paper measures the surface potential of Au/TiO2 film by Kelvin probe force microscope (KPFM) under various conditions, and then develops a theoretical model for quantitative interpretation. The model can well fit the relationship of surface potential versus light power under various irradiation wavelengths. The study in this paper opens the pathway for quantitative characterization of the efficiency of hot-electron injection and sheds light on improving the plasmonic efficiency of photoelectric conversion and photocatalysis.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationApplied surface science, 30 Oct. 2019, v. 492, p. 644-650en_US
dcterms.isPartOfApplied surface scienceen_US
dcterms.issued2019-10-30-
dc.identifier.scopus2-s2.0-85068503043-
dc.identifier.eissn1873-5584en_US
dc.description.validate202308 bcvcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAP-0269-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; 863 project; Excellent Talents Technology Innovation Program of Shanxi Provinceen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS26963350-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhang_Quantitative_Investigation_Plasmonic.pdfPre-Published version1.51 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

70
Citations as of Apr 14, 2025

Downloads

100
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

18
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

15
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.