Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/100234
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorHuang, JQen_US
dc.creatorLin, Xen_US
dc.creatorTan, Hen_US
dc.creatorDu, Xen_US
dc.creatorZhang, Ben_US
dc.date.accessioned2023-08-08T01:54:00Z-
dc.date.available2023-08-08T01:54:00Z-
dc.identifier.issn2095-4956en_US
dc.identifier.urihttp://hdl.handle.net/10397/100234-
dc.language.isoenen_US
dc.publisherChinese Chemical Societyen_US
dc.rights© 2019 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.en_US
dc.rights© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Huang, J. Q., Lin, X., Tan, H., Du, X., & Zhang, B. (2020). Realizing high-performance Zn-ion batteries by a reduced graphene oxide block layer at room and low temperatures. Journal of Energy Chemistry, 43, 1-7 is available at https://doi.org/10.1016/j.jechem.2019.07.011.en_US
dc.subjectAqueous Zn-ion batteriesen_US
dc.subjectBlock layeren_US
dc.subjectDissolutionen_US
dc.subjectLow temperaturesen_US
dc.subjectSelf-dischargeen_US
dc.titleRealizing high-performance Zn-ion batteries by a reduced graphene oxide block layer at room and low temperaturesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1en_US
dc.identifier.epage7en_US
dc.identifier.volume43en_US
dc.identifier.doi10.1016/j.jechem.2019.07.011en_US
dcterms.abstractRechargeable aqueous Zn-ion batteries (ZIBs) have attracted great attention due to their cost-effectiveness, high safety, and environmental friendliness. However, some issues associated with poor structural instability of cathode materials and fast self-discharge hinder the further development of ZIBs. Herein, a new configuration is introduced by placing a reduced graphene oxide film as a block layer between the separator and the V2O5·nH2O cathode. This layer prevents the free diffusion of dissolved active materials to the anode and facilitates the transport of Zn ion and electrons, largely improving the cyclic stability and alleviating the self-discharge. Accordingly, the optimized battery delivers a remarkable capacity of 191 mAh g−1 after 500 cycles at 2 A g−1. Moreover, a high capacity of 106 mAh g−1 is achieved after 100 cycles at −20 °C. The strategy proposed is expected to be applicable to other electrode systems, thus offering a new approach to circumvent the critical challenges facing aqueous batteries.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of energy chemistry, Apr. 2020, v. 43, p. 1-7en_US
dcterms.isPartOfJournal of energy chemistryen_US
dcterms.issued2020-04-
dc.identifier.scopus2-s2.0-85073707208-
dc.description.validate202308 bcvcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAP-0209-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS20897963-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Huang_Realizing_High-Performance_Zn-Ion.pdfPre-Published version2.17 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

60
Citations as of Apr 14, 2025

Downloads

58
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

34
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

28
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.