Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/100213
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorZheng, Fen_US
dc.creatorLam, WCen_US
dc.creatorLai, KHen_US
dc.creatorHuang, Len_US
dc.creatorWong, LWen_US
dc.creatorZhang, Yen_US
dc.creatorYan, Zen_US
dc.creatorSham, CCen_US
dc.creatorThi, QHen_US
dc.creatorLy, THen_US
dc.creatorZhao, Jen_US
dc.date.accessioned2023-08-08T01:53:45Z-
dc.date.available2023-08-08T01:53:45Z-
dc.identifier.urihttp://hdl.handle.net/10397/100213-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.rights© 2020 American Chemical Societyen_US
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in Environmental Science and Technology Letters, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.estlett.0c00402.en_US
dc.titleSynchronized structure and surface tension measurement on individual secondary aerosol particles by low-voltage transmission electron microscopyen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage560en_US
dc.identifier.epage566en_US
dc.identifier.volume7en_US
dc.identifier.issue8en_US
dc.identifier.doi10.1021/acs.estlett.0c00402en_US
dcterms.abstractA number of physical and chemical models have been built to describe secondary aerosols (SAs) in the atmosphere; however, direct experimental approaches to simultaneously characterizing the chemical structures and physical properties on the single-particle level are lacking. This lack obscures our understanding of SA formation mechanisms and impedes the development on the accurate prediction and control of air pollution. Here we obtained clear core-shell structural information about the aqueous aerosols employing low-voltage transmission electron microscopy-energy dispersive spectroscopy. The prevalent 10-20% surface tension reduction due to organic matter partitioning has been unveiled. Further analysis and modeling show that smaller SAs can yield greater surface tension reduction, while the pronounced surface tension reduction may enlarge the size of SAs by ≤50%. Our work paves the way for an unprecedented comprehensive single-particle study of the global atmospheric SA problem. Copyrighten_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationEnvironmental science and technology letters, 11 Aug. 2020, v. 7, no. 8, p. 560-566en_US
dcterms.isPartOfEnvironmental science and technology lettersen_US
dcterms.issued2020-08-11-
dc.identifier.scopus2-s2.0-85091646840-
dc.identifier.eissn2328-8930en_US
dc.description.validate202308 bcvcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAP-0151-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Shenzhen Science and Technology Innovation Commission; The National Science Foundationen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS50628748-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zheng_Synchronized_Structure_Surface.pdfPre-Published version2.93 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

88
Citations as of Apr 14, 2025

Downloads

99
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

3
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

3
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.