Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/100113
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.creatorSong, AXen_US
dc.creatorLi, LQen_US
dc.creatorYin, JYen_US
dc.creatorChiou, JCen_US
dc.creatorWu, JYen_US
dc.date.accessioned2023-08-08T01:52:15Z-
dc.date.available2023-08-08T01:52:15Z-
dc.identifier.urihttp://hdl.handle.net/10397/100113-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2020 Elsevier Ltd. All rights reserved.en_US
dc.rights©2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Song, A. X., Li, L. Q., Yin, J. Y., Chiou, J. C., & Wu, J. Y. (2020). Mechanistic insights into the structure-dependant and strain-specific utilization of wheat arabinoxylan by Bifidobacterium longum. Carbohydrate polymers, 249, 116886 is available at https://doi.org/10.1016/j.carbpol.2020.116886.en_US
dc.subjectArabinoxylanen_US
dc.subjectBifidobacteriaen_US
dc.subjectDegradation mechanismen_US
dc.subjectGenomic analysisen_US
dc.subjectMolecular weighten_US
dc.subjectStrain-specificen_US
dc.subjectStructure-dependenceen_US
dc.titleMechanistic insights into the structure-dependant and strain-specific utilization of wheat arabinoxylan by Bifidobacterium longumen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume249en_US
dc.identifier.doi10.1016/j.carbpol.2020.116886en_US
dcterms.abstractArabinoxylan (AX), an important dietary fiber from cereal grains, is mainly metabolised in the large intestine by gut bacteria, especially bifidobacteria. This study investigated the uptake and metabolism of wheat AX by a Bifidobacterium longum strain that could grow well with AX as the sole carbon source. The bacterial growth rate showed a significant correlation to the molecular weight (MW) of AX and its acid hydrolysates. Assessment of the key AX degrading enzymes suggested that the uptake and consumption of AX involved extracellular cleavage of xylan backbone and intracellular degradation of both the backbone and the arabinose substitution. The preference for native or partially hydrolysed AX with single substitutions and a sufficiently high MW suggested the structure-dependant uptake by the bacterial cells. Genetic analysis of B. longum showed the lack of β-xylosidase, suggesting the existence of unknown enzymes or dual/multiple-specific enzymes for hydrolysis of the non-reducing end of xylan backbone.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationCarbohydrate polymers, 1 Dec. 2020, v. 249, 116886en_US
dcterms.isPartOfCarbohydrate polymersen_US
dcterms.issued2020-12-01-
dc.identifier.scopus2-s2.0-85089489199-
dc.identifier.pmid32933699-
dc.identifier.eissn0144-8617en_US
dc.identifier.artn116886en_US
dc.description.validate202308 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberABCT-0185-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS50642010-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Song_Mechanistic_Insights_Structure-Dependant.pdfPre-Published version1.53 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

83
Citations as of Apr 14, 2025

Downloads

116
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

35
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

32
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.