Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/100112
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorMainland Development Officeen_US
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.creatorXue, Qen_US
dc.creatorXie, Yen_US
dc.creatorWu, Sen_US
dc.creatorWu, TSen_US
dc.creatorSoo, YLen_US
dc.creatorDay, Sen_US
dc.creatorTang, CCen_US
dc.creatorMan, HWen_US
dc.creatorYuen, STen_US
dc.creatorWong, KYen_US
dc.creatorWang, Yen_US
dc.creatorLo, BTWen_US
dc.creatorTsang, SCEen_US
dc.date.accessioned2023-08-08T01:52:15Z-
dc.date.available2023-08-08T01:52:15Z-
dc.identifier.issn2040-3364en_US
dc.identifier.urihttp://hdl.handle.net/10397/100112-
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.rightsThis journal is © The Royal Society of Chemistry 2020en_US
dc.rightsThe following publication Xue, Q., Xie, Y., Wu, S., Wu, T. S., Soo, Y. L., Day, S., ... & Tsang, S. C. (2020). A rational study on the geometric and electronic properties of single-atom catalysts for enhanced catalytic performance. Nanoscale, 12(45), 23206-23212 is available at https://doi.org/10.1039/d0nr06006b.en_US
dc.titleA rational study on the geometric and electronic properties of single-atom catalysts for enhanced catalytic performanceen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage23206en_US
dc.identifier.epage23212en_US
dc.identifier.volume12en_US
dc.identifier.issue45en_US
dc.identifier.doi10.1039/d0nr06006ben_US
dcterms.abstractWe investigate the geometric and electronic properties of single-atom catalysts (SACs) within metal-organic frameworks (MOFs) with respect to electrocatalytic CO2 reduction as a model reaction. A series of mid-to-late 3d transition metals have been immobilised within the microporous cavity of UiO-66-NH2. By employing Rietveld refinement of new-generation synchrotron diffraction, we not only identified the crystallographic and atomic parameters of the SACs that are stabilised with a robust M⋯N(MOF) bonding of ca. 2.0 Å, but also elucidated the end-on coordination geometry with CO2. A volcano trend in the FEs of CO has been observed. In particular, the confinement effect within the rigid MOF can greatly facilitate redox hopping between the Cu SACs, rendering high FEs of CH4 and C2H4 at a current density of -100 mA cm-2. Although only demonstrated in selected SACs within UiO-66-NH2, this study sheds light on the rational engineering of molecular interactions(s) with SACs for the sustainable provision of fine chemicals.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationNanoscale, 7 Dec. 2020, v. 12, no. 45, p. 23206-23212en_US
dcterms.isPartOfNanoscaleen_US
dcterms.issued2020-12-07-
dc.identifier.scopus2-s2.0-85096886332-
dc.identifier.pmid33201980-
dc.identifier.eissn2040-3372en_US
dc.description.validate202308 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberABCT-0184-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNSFC; Science and Technology Planning Project of Guangdong Provinceen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS50637156-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Man_Rational_Study_Geometric.pdfPre-Published version843.24 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

91
Citations as of Apr 14, 2025

Downloads

124
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

16
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

16
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.