Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/100104
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.creatorWang, Jen_US
dc.creatorCheng, Cen_US
dc.creatorHuang, Ben_US
dc.creatorCao, Jen_US
dc.creatorLi, Len_US
dc.creatorShao, Qen_US
dc.creatorZhang, Len_US
dc.creatorHuang, Xen_US
dc.date.accessioned2023-08-08T01:52:10Z-
dc.date.available2023-08-08T01:52:10Z-
dc.identifier.issn1530-6984en_US
dc.identifier.urihttp://hdl.handle.net/10397/100104-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.rights© 2021 American Chemical Societyen_US
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in Nano Letters, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.nanolett.0c04004.en_US
dc.subjectCO2 reductionen_US
dc.subjectEthyleneen_US
dc.subjectLa2CuO4 perovskiteen_US
dc.subjectNanobamboosen_US
dc.subjectTwin boundaryen_US
dc.titleGrain-boundary-engineered La₂CuO₄ perovskite nanobamboos for efficient CO₂ reduction Reactionen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle in author's file: Grain boundary-engineered La2CuO4 perovskite nanowires for efficient CO2 reduction reactionen_US
dc.identifier.spage980en_US
dc.identifier.epage987en_US
dc.identifier.volume21en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1021/acs.nanolett.0c04004en_US
dcterms.abstractElectroreduction of carbon dioxide (CO₂RR) has been regarded as a promising approach to realize the production of useful fuels and to decrease greenhouse gas levels simultaneously, where high-efficiency catalysts are required. Herein, we report La₂CuO₄ nanobamboo (La₂CuO₄ NBs) perovskite with rich twin boundaries showing a high Faraday efficiency (FE) of 60% toward ethylene (C2H4), whereas bulk La₂CuO₄ exhibits a FECO of 91%. X-ray absorption spectroscopy (XAS) reveals that the Cu in La₂CuO₄ NBs is in the Cu²⁺ state, and no obvious change can be observed during the catalytic process, as monitored by in situ XAS. Density functional theory calculations reveal that the superior FEC₂H₄ of La₂CuO₄ NBs originates from the active (113) surfaces with intrinsic strain. The formation of gap states annihilates the electron transfer barrier of C-C coupling, resulting in the high FEC₂H₄. This work provides a new perspective for developing efficient perovskite catalysts via grain boundary engineering.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationNano letters, 27 Jan. 2021, v. 21, no. 2, p. 980-987en_US
dcterms.isPartOfNano lettersen_US
dcterms.issued2021-01-27-
dc.identifier.scopus2-s2.0-85100071274-
dc.identifier.pmid33448862-
dc.identifier.eissn1530-6992en_US
dc.description.validate202308 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberABCT-0165-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextMinistry of Science and Technology; National Natural Science Foundation of China; Young Thousand Talents Program; Natural Science Foundation of Jiangsu Higher Education Institutions; Project of scientific and technologic infrastructure of Suzhou; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD); Start-up support from Xiamen Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS50659246-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Huang_Grain-Boundary-Engineered_La2CuO4_Perovskite.pdfPre-Published version3.92 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

88
Citations as of Apr 14, 2025

Downloads

227
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

115
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

113
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.