Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/100065
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.creatorYao, Qen_US
dc.creatorHuang, Ben_US
dc.creatorXu, Yen_US
dc.creatorLi, Len_US
dc.creatorShao, Qen_US
dc.creatorHuang, Xen_US
dc.date.accessioned2023-08-08T01:51:50Z-
dc.date.available2023-08-08T01:51:50Z-
dc.identifier.issn2211-2855en_US
dc.identifier.urihttp://hdl.handle.net/10397/100065-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2021 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Yao, Q., Huang, B., Xu, Y., Li, L., Shao, Q., & Huang, X. (2021). A chemical etching strategy to improve and stabilize RuO2-based nanoassemblies for acidic oxygen evolution. Nano Energy, 84, 105909 is available at https://doi.org/10.1016/j.nanoen.2021.105909.en_US
dc.subjectAcidicen_US
dc.subjectDefecten_US
dc.subjectOxygen evolution reactionen_US
dc.subjectRutheniumen_US
dc.subjectVacancyen_US
dc.titleA chemical etching strategy to improve and stabilize RuO₂-based nanoassemblies for acidic oxygen evolutionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume84en_US
dc.identifier.doi10.1016/j.nanoen.2021.105909en_US
dcterms.abstractRuO₂-based catalysts have been widely used for acidic oxygen evolution reaction (OER), a key half reaction of overall water splitting. However, RuO₂ suffers from the drawbacks of inferior OER performance in acidic conditions due to its poor stability. We here demonstrate a chemical etching strategy for fabricating a Ru/Fe oxide towards OER, in which Fe species in the pristine Ru/Fe nanoassemblies (P-Ru/Fe NAs) are partially etched by nitric acid (HNO₃), leading to the generation of abundant vacancies in the etched Ru/Fe oxide nanoassemblies (E-Ru/Fe ONAs). Owing to the etching of Fe, the local electron density of the lattice O associated with Ru atoms is significantly increased, resulting in the suppression of H₂O adsorption on lattice O. On the other hand, the O vacancies in the E-Ru/Fe ONAs can promote the H₂O adsorption on metal atoms (i.e., Ru and Fe). Consequently, the optimized E-Ru/Fe ONAs exhibit a superior OER activity with a low overpotential of 238 mV at 10 mA cm−2 in 0.5 M H₂SO₄, and an enhanced stability with a negligible potential change within 9 h chronopotentiometry test. Theoretical calculations demonstrate that the defective surface of E-Ru/Fe ONA can not only enhance the stability via surface structural modulation, but also optimize the binding strength of the intermediates for promoting OER activity. This work provides an efficient strategy for fabricating active and stable RuO₂-based catalysts for OER, which may deepen the research in surface engineering of catalysts.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationNano energy, June 2021, v. 84, 105909en_US
dcterms.isPartOfNano energyen_US
dcterms.issued2021-06-
dc.identifier.scopus2-s2.0-85101680318-
dc.identifier.eissn2211-3282en_US
dc.identifier.artn105909en_US
dc.description.validate202308 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberABCT-0097-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextMinistry of Science and Technology, China; National Natural Science Foundation of China; Young Thousand Talented Program, Jiangsu Province Natural Science Fund for Distinguished Young Scholars, China; Natural Science Foundation of Jiangsu Province, China; Priority Academic Program Development of Jiangsu Higher Education Institutions, China (PAPD); Start-up funding from Xiamen Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS50658587-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Huang_Chemical_Etching_Strategy.pdfPre-Published version2.61 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

78
Citations as of Apr 14, 2025

Downloads

148
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

119
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

82
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.