Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/100063
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.contributorResearch Institute for Smart Energyen_US
dc.creatorChoi, Jen_US
dc.creatorKim, Den_US
dc.creatorZheng, Wen_US
dc.creatorYan, Ben_US
dc.creatorLi, Yen_US
dc.creatorLee, LYSen_US
dc.creatorPiao, Yen_US
dc.date.accessioned2023-08-08T01:51:48Z-
dc.date.available2023-08-08T01:51:48Z-
dc.identifier.issn0926-3373en_US
dc.identifier.urihttp://hdl.handle.net/10397/100063-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2021 Elsevier B.V. All rights reserved.en_US
dc.rights© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Choi, J., Kim, D., Zheng, W., Yan, B., Li, Y., Lee, L. Y. S., & Piao, Y. (2021). Interface engineered NiFe2O4− x/NiMoO4 nanowire arrays for electrochemical oxygen evolution. Applied Catalysis B: Environmental, 286, 119857 is available at https://doi.org/10.1016/j.apcatb.2020.119857.en_US
dc.subjectActive surface phaseen_US
dc.subjectElectrocatalysisen_US
dc.subjectInterface engineeringen_US
dc.subjectOxygen evolution reactionen_US
dc.subjectPrussian blue analogen_US
dc.titleInterface engineered NiFe₂O₄−x/NiMoO₄ nanowire arrays for electrochemical oxygen evolutionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume286en_US
dc.identifier.doi10.1016/j.apcatb.2020.119857en_US
dcterms.abstractDesigning highly active and stable electrocatalysts for oxygen evolution reaction (OER) is the key to success in sustainable water splitting reaction, a sustainable route towards high purity hydrogen production. Interface engineering is one of the most effective strategies for modulating the local electronic structure of active sites to enhance catalytic activity. Herein, NiFe₂O₄−x nanoparticles were integrated to NiMoO₄ nanowires (NiFe₂O₄−x/NMO) grown on nickel foam to construct an extended interface with strong electronic interactions. The NiFe₂O₄−x/NMO demonstrates high OER activities as manifested by a low overpotential of 326 mV at a high current density of 600 mA cm⁻² and good long-term stability. The intimate interface between NiFe₂O₄−x and NiMoO4 is responsible for the Fe-facilitated phase transition to active γ-NiOOH phase as revealed by in situ Raman spectroelectrochemical studies. This study outlines how the interface design of integrated nanostructures can optimize the formation of active phase for enhanced catalytic activity.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationApplied catalysis B : environmental, 5 June 2021, v. 286, 119857en_US
dcterms.isPartOfApplied catalysis B : environmentalen_US
dcterms.issued2021-06-05-
dc.identifier.scopus2-s2.0-85099197104-
dc.identifier.eissn1873-3883en_US
dc.identifier.artn119857en_US
dc.description.validate202308 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberABCT-0094-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Center for Integrated Smart Sensors funded by the Ministry of Science; ICT and Future Planning, Republic of Korea, as Global Frontier Project; Basic Science Research Program through National Research Foundation of Korea; Nano Materials Technology Development Program; The Innovation and Technology Commission of Hong Kong; Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS50643746-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Kim_Interface_Engineered_Nanowire.pdfPre-Published version2.59 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

91
Citations as of Apr 14, 2025

Downloads

185
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

182
Citations as of Aug 1, 2025

WEB OF SCIENCETM
Citations

155
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.