Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/100060
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.creatorHu, Len_US
dc.creatorLi, Yen_US
dc.creatorPeng, Xen_US
dc.creatorZheng, Wen_US
dc.creatorXu, Wen_US
dc.creatorZhu, Jen_US
dc.creatorLee, LYSen_US
dc.creatorChu, PKen_US
dc.creatorWong, KYen_US
dc.date.accessioned2023-08-08T01:51:46Z-
dc.date.available2023-08-08T01:51:46Z-
dc.identifier.issn1385-8947en_US
dc.identifier.urihttp://hdl.handle.net/10397/100060-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2020 Elsevier B.V. All rights reserved.en_US
dc.rights© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Hu, L., Li, Y., Peng, X., Zheng, W., Xu, W., Zhu, J., ... & Wong, K. Y. (2021). TiO2 film supported by vertically aligned gold nanorod superlattice array for enhanced photocatalytic hydrogen evolution. Chemical Engineering Journal, 417, 127900 is available at https://doi.org/10.1016/j.cej.2020.127900.en_US
dc.subjectAu nanorod superlatticeen_US
dc.subjectHot electronen_US
dc.subjectNear field enhancementen_US
dc.subjectPhotocatalytic hydrogen evolutionen_US
dc.subjectSurface plasmon resonanceen_US
dc.titleTiO₂ film supported by vertically aligned gold nanorod superlattice array for enhanced photocatalytic hydrogen evolutionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume417en_US
dc.identifier.doi10.1016/j.cej.2020.127900en_US
dcterms.abstractPhotocatalytic hydrogen generation from water as a renewable non-polluting technique for converting solar energy to chemical energy has recently attracted worldwide attention. However, low hydrogen production efficiency of traditional photocatalysis still remains as a challenge. Here, we report a large area TiO₂ film supported by vertically ordered Au nanorods superlattice array (O-AuNRs/TiO₂), which demonstrates excellent photocatalytic performances of hydrogen evolution from water under solar and visible light irradiation. The O-AuNRs/TiO₂ architecture enables the significant localized surface plasmon resonance (LSPR) enhancement, including both local electromagnetic field effect and hot electron transfer effect, which promotes the photocatalytic hydrogen evolution rate of the TiO₂ film by 58 times. The photocatalytic efficiency of O-AuNRs/TiO₂ exceeds that of the TiO₂ film supported by randomly oriented AuNRs by over five times. Finite difference time domain (FDTD) modeling results support that the strong coupling of O-AuNRs enhances the electromagnetic field intensity along the longitudinal axis in the gaps between adjacent AuNRs and the average electric field enhancement factors at the interface between the AuNRs and TiO₂ of O-AuNRs/TiO₂. This work demonstrates the substantial performance boost of conventional photocatalyst by LSPR enhancement, thus provides a promising tactic to devise highly efficient photocatalytic system for solar energy conversion.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationChemical engineering journal, 1 Aug. 2021, v. 417, 127900en_US
dcterms.isPartOfChemical engineering journalen_US
dcterms.issued2021-08-01-
dc.identifier.scopus2-s2.0-85097222707-
dc.identifier.artn127900en_US
dc.description.validate202308 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberABCT-0073-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Innovation and Technology Commission of Hong Kong; The Hong Kong Polytechnic University; National Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS41734947-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Hu_Tio2_Film_Supported.pdfPre-Published version2.77 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

72
Citations as of Apr 14, 2025

Downloads

85
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

33
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

29
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.