Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/100025
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorJiang, Hen_US
dc.creatorZhao, Xen_US
dc.creatorMa, RCWen_US
dc.creatorFan, Xen_US
dc.date.accessioned2023-08-01T02:59:30Z-
dc.date.available2023-08-01T02:59:30Z-
dc.identifier.issn1017-0405en_US
dc.identifier.urihttp://hdl.handle.net/10397/100025-
dc.language.isoenen_US
dc.publisherAcademia Sinica, Institute of Statistical Scienceen_US
dc.rightsPosted with permission of the publisher.en_US
dc.rightsThe following publication Jiang, H., Zhao, X., Ma, R. C., & Fan, X. (2022). Consistent screening procedures in high-dimensional binary classification. Statistica Sinica, 32(1), p. 109-130 is available at https://doi.org/10.5705/ss.202020.0088.en_US
dc.subjectBinary classificationen_US
dc.subjectConsistencyen_US
dc.subjectNon-Parametric testen_US
dc.subjectTwo-Sample distribution comparisonen_US
dc.subjectVariable screeningen_US
dc.titleConsistent screening procedures in high-dimensional binary classificationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage109en_US
dc.identifier.epage130en_US
dc.identifier.volume32en_US
dc.identifier.issue1en_US
dc.identifier.doi10.5705/ss.202020.0088en_US
dcterms.abstractWe consider variable screening in high-dimensional binary classification. First, we propose nonparametric test statistics for the problem of the two-sample distribution comparison. These test statistics combine the merits of the chi-squared and Kolmogorov-Smirnov statistics, and provide new insights into the equality test of the unspecified distributions underlying the two independent samples. Based on our new statistics, we propose a marginal screening procedure and a pairwise joint screening procedure for detecting important variables in high-dimensional binary classification. Both screening procedures have the consistent screening property, which is stronger than the sure screening property of most existing methods. The marginal screening procedure is much more powerful than other methods over a broad range of cases, and the pairwise joint screening procedure provides a way of detecting variables with a joint effect, but no marginal effect. Extensive simulations and a real-data application show the effectiveness and advantages of the proposed methods.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationStatistica sinica, 2022, v. 32, no. 1, p. 109-130en_US
dcterms.isPartOfStatistica sinicaen_US
dcterms.issued2022-
dc.identifier.scopus2-s2.0-85161631825-
dc.description.validate202308 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera2342a-
dc.identifier.SubFormID47542-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryPublisher permissionen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Jiang-Zhao-Fan-SS2022.pdf445.26 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

101
Citations as of Apr 14, 2025

Downloads

67
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

4
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

3
Citations as of Dec 19, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.