Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/100024
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorHu, Xen_US
dc.creatorSu, Wen_US
dc.creatorZhao, Xen_US
dc.date.accessioned2023-08-01T02:44:48Z-
dc.date.available2023-08-01T02:44:48Z-
dc.identifier.urihttp://hdl.handle.net/10397/100024-
dc.language.isoenen_US
dc.publisherInstitute of Mathematical Statisticsen_US
dc.rightsAll works in this journal are licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Xiangbin Hu. Wen Su. Xingqiu Zhao. "Sieve estimation of semiparametric accelerated mean models with panel count data." Electron. J. Statist. 17 (1) 1316 - 1343, 2023 is available at https://doi.org/10.1214/23-EJS2128.en_US
dc.subjectAccelerated mean modelen_US
dc.subjectCounting processen_US
dc.subjectEmpirical processen_US
dc.subjectPanel count dataen_US
dc.subjectSieve least squares estimationen_US
dc.titleSieve estimation of semiparametric accelerated mean models with panel count dataen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1316en_US
dc.identifier.epage1343en_US
dc.identifier.volume17en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1214/23-EJS2128en_US
dcterms.abstractA widely adopted semiparametric model for analyzing panel count data is a proportional mean model, which may be deemed inappropriate when the proportionality assumption is violated. Motivated by the popular accelerated failure time model that relaxes such assumption, we investigate accelerated mean models for semiparametric regression analysis of panel count data. For estimation of bundled parameters, we develop a sieve least squares estimation procedure, which is robust in the sense that no distributional assumption is required for the underlying recurrent event process. Overcoming the theoretical challenges from bundled parameters, we establish the consistency and convergence rate of the proposed estimators, and derive the asymptotic normality of both the finite-dimensional estimator and the functionals of the infinite-dimensional estimator. Simulation studies demonstrate promising performances of the proposed approach, and an application to a skin cancer chemoprevention trial yields some new findings.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationElectronic journal of statistics, 2023, v. 17, no. 1, p. 1316-1343en_US
dcterms.isPartOfElectronic journal of statisticsen_US
dcterms.issued2023-
dc.identifier.eissn1935-7524en_US
dc.description.validate202308 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera2342a-
dc.identifier.SubFormID47540-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
23-EJS2128.pdf2 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

124
Last Week
3
Last month
Citations as of Nov 10, 2025

Downloads

66
Citations as of Nov 10, 2025

WEB OF SCIENCETM
Citations

1
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.