Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/100020
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorHu, Yen_US
dc.creatorShi, Xen_US
dc.creatorXu, ZQen_US
dc.date.accessioned2023-07-28T07:37:07Z-
dc.date.available2023-07-28T07:37:07Z-
dc.identifier.issn1050-5164en_US
dc.identifier.urihttp://hdl.handle.net/10397/100020-
dc.language.isoenen_US
dc.publisherInstitute of Mathematical Statisticsen_US
dc.rights© Institute of Mathematical Statistics, 2022en_US
dc.rightsThe following publication Hu, Y., Shi, X., & Xu, Z. Q. (2022). Constrained stochastic LQ control with regime switching and application to portfolio selection. The Annals of Applied Probability, 32(1), 426-460 is available at https://doi.org/10.1214/21-AAP1684.en_US
dc.subjectConstrained stochastic LQ controlen_US
dc.subjectRegime switchingen_US
dc.subjectExtended stochastic Riccati equationen_US
dc.subjectExistenceen_US
dc.subjectUniquenessen_US
dc.subjectMean-variance portfolio selectionen_US
dc.titleConstrained stochastic LQ control with regime switching and application to portfolio selectionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage426en_US
dc.identifier.epage460en_US
dc.identifier.volume32en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1214/21-AAP1684en_US
dcterms.abstractThis paper is concerned with a stochastic linear-quadratic optimal control problem with regime switching, random coefficients and cone control constraint. The randomness of the coefficients comes from two aspects: the Brownian motion and the Markov chain. Using Itô’s lemma for Markov chain, we obtain the optimal state feedback control and optimal cost value explicitly via two new systems of extended stochastic Riccati equations (ESREs). We prove the existence and uniqueness of the two ESREs using tools including multidimensional comparison theorem, truncation function technique, log transformation and the John–Nirenberg inequality. These results are then applied to study mean-variance portfolio selection problems with and without short-selling prohibition with random parameters depending on both the Brownian motion and the Markov chain. Finally, the efficient portfolios and efficient frontiers are presented in closed forms.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAnnals of applied probability, Feb. 2022, v. 32, no. 1, p. 426-460en_US
dcterms.isPartOfAnnals of applied probabilityen_US
dcterms.issued2022-02-
dc.identifier.scopus2-s2.0-85126577940-
dc.identifier.ros2021002545-
dc.identifier.eissn2168-8737en_US
dc.description.validate202307 bckwen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberAMA-0182, CDCF_2021-2022, a1708, a2099-
dc.identifier.SubFormID45820, 46590-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextLebesgue Center of Mathematics; NSFC; NSF of Shandong Province; Colleges and Universities Youth Innovation Technology Program of Shandong Province; Hong Kong GRF; The Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS52871555, 64409802-
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
21-AAP1684.pdf338.1 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

136
Citations as of Oct 6, 2025

Downloads

112
Citations as of Oct 6, 2025

SCOPUSTM   
Citations

20
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

9
Citations as of Aug 1, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.