Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/100019
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorTang, Nen_US
dc.creatorYan, Xen_US
dc.creatorZhao, Xen_US
dc.date.accessioned2023-07-28T07:36:02Z-
dc.date.available2023-07-28T07:36:02Z-
dc.identifier.issn0090-5364en_US
dc.identifier.urihttp://hdl.handle.net/10397/100019-
dc.language.isoenen_US
dc.publisherInstitute of Mathematical Statisticsen_US
dc.rights© Institute of Mathematical Statistics, 2020en_US
dc.rightsThe following publication Tang, N., Yan, X., & Zhao, X. (2020). Penalized generalized empirical likelihood with a diverging number of general estimating equations for censored data, 48(1), 607-627 is available at https://doi.org/10.1214/19-AOS1870.en_US
dc.subjectCensored survival dataen_US
dc.subjectPenalized generalized empirical likelihooden_US
dc.subjectPenalized generalized empirical likelihood ratio testen_US
dc.subjectOracle propertyen_US
dc.subjectSemiparametric efficiencyen_US
dc.titlePenalized generalized empirical likelihood with a diverging number of general estimating equations for censored dataen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage607en_US
dc.identifier.epage627en_US
dc.identifier.volume48en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1214/19-AOS1870en_US
dcterms.abstractThis article considers simultaneous variable selection and parameter estimation as well as hypothesis testing in censored survival models where a parametric likelihood is not available. For the problem, we utilize certain growing dimensional general estimating equations and propose a penalized generalized empirical likelihood, where the general estimating equations are constructed based on the semiparametric efficiency bound of estimation with given moment conditions. The proposed penalized generalized empirical likelihood estimators enjoy the oracle properties, and the estimator of any fixed dimensional vector of nonzero parameters achieves the semiparametric efficiency bound asymptotically. Furthermore, we show that the penalized generalized empirical likelihood ratio test statistic has an asymptotic central chi-square distribution. The conditions of local and restricted global optimality of weighted penalized generalized empirical likelihood estimators are also discussed. We present a two-layer iterative algorithm for efficient implementation, and investigate its convergence property. The performance of the proposed methods is demonstrated by extensive simulation studies, and a real data example is provided for illustration.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAnnals of statistics, Feb. 2020, v. 48, no. 1, p. 607-627en_US
dcterms.isPartOfAnnals of statisticsen_US
dcterms.issued2020-02-
dc.description.validate202307 bckwen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberAMA-0209-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS23081568-
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
19-AOS1870.pdf260.41 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

104
Citations as of Apr 14, 2025

Downloads

41
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

5
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

4
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.