Please use this identifier to cite or link to this item:
Title: A polycation-modified nanofillers tailored polymer electrolytes fiber for versatile biomechanical energy harvesting and full-range personal healthcare sensing
Authors: Li, Z 
Xu, B 
Han, J 
Huang, J 
Fu, H
Issue Date: 2021
Source: Advanced functional materials, 2021, Early View, 2106731,
Abstract: The emergence of fibrous energy harvesters and self-powered sensors gives birth to functional wearable electronics. However, low power outputs, poor sensing abilities, and limited material selections have greatly restricted their developments. Herein, novel polycation-modified carbon dots (PCDs) tailored PCDs/polyvinyl alcohol nanocomposite polymer electrolytes (NPEs) are prepared and used as dominating triboelectric materials to construct a new NPEs-based fiber triboelectric nanogenerator (NPE-TENG) for the first time. The filling of PCDs endows NPEs with enhanced ionic conductivity. The developed NPE-TENG can respond to different mechanical stimuli with excellent flexibility and deliver a high power density of 265.8 µW m−1. Self-powered wearable sensor and smart glove based on NPE-TENG are further developed, which can achieve skin-level tactile sensing and joint-related activities monitoring in a rapid, real-time, and noninvasive way. As a sustainable power source, the NPE-TENG can drive small electronics and light up hundreds of light-emitting diodes. This study not only renders new insights into the development of triboelectric materials for fiber-based TENG but also provides a direction for potential applications of fibrous biomechanical energy harvesters and self-powered sensors in wearable electronics, personal healthcare monitoring, and human–machine interactions.
Keywords: Fibers
Polymer electrolytes
Self-powered wearable sensors
Triboelectric nanogenerators
Publisher: Wiley-VCH
Journal: Advanced functional materials 
ISSN: 1616-301X
EISSN: 1616-3028
DOI: 10.1002/adfm.202106731
Appears in Collections:Journal/Magazine Article

Open Access Information
Status embargoed access
Embargo End Date 0000-00-00 (to be updated)
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

Citations as of May 22, 2022


Citations as of May 26, 2022


Citations as of May 26, 2022

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.