Please use this identifier to cite or link to this item:
Title: Design of CFRP-strengthened stainless steel tubular sections subjected to web crippling
Authors: Islam, SMZ
Cai, Y 
Young, B 
Issue Date: Aug-2019
Source: Journal of constructional steel research, Aug. 2019, v. 159, p. 442-458
Abstract: This paper presents a nonlinear finite element analysis and also depicts the design of stainless steel hollow square and rectangular sections strengthened by CFRP under web crippling loading configurations. Current design rules do not provide sufficient information for predicting the performance of CFRP-strengthened stainless steel hollow sections against web crippling. To develop a new comprehensive design rule, this research provided a nonlinear finite element analysis (FEA) based on a series of laboratory tests. The tests were conducted subjected to four different loading conditions, end-two-flange (ETF), end-one-flange (EOF) interior-two-flange (ITF) and interior-one-flange (IOF). Geometric and material nonlinear finite-element models were developed, substantiated by the experimental results. The traction separation law was used to simulate the debonding mechanism between the CFRP plate and stainless steel tubes in the nonlinear analysis process for the cohesive zone modeling. The finite-element models explicated well the behavior of CFRP strengthening and closely predicted the ultimate load-carrying capacity, web-crippling failure modes, as well as web-deformation curves of the tested sections. A parametric investigation was conducted using the verified finite element models for tubular sections with different dimensions. For CFRP enhancement of stainless steel members, the validated finite element models has been demonstrated as an constructive and time-saving method to determine the strengths of web crippling. The proposed design equation predictions also agreed well with the tests and numerical results. The web crippling strengths can be predicted effectively by the proposed design equation for CFRP enrichment stainless steel hollow sections against web crippling loading configurations.
Keywords: CFRP strengthening
Finite element analysis
Proposed design equation
Stainless steel
Tubular sections
Web crippling
Publisher: Elsevier
Journal: Journal of constructional steel research 
ISSN: 0143-974X
EISSN: 1873-5983
DOI: 10.1016/j.jcsr.2019.04.043
Appears in Collections:Journal/Magazine Article

Open Access Information
Status embargoed access
Embargo End Date 2022-08-31
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

Citations as of May 22, 2022


Citations as of May 12, 2022


Citations as of May 26, 2022

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.