Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/79117
PIRA download icon_1.1View/Download Full Text
Title: Spatiotemporal fusion of multisource remote sensing data : literature survey, taxonomy, principles, applications, and future directions
Authors: Zhu, X 
Cai, F 
Tian, J 
Williams, TKA 
Issue Date: 2018
Source: Remote sensing, 2018, v. 10, no. 4, 527
Abstract: Satellite time series with high spatial resolution is critical for monitoring land surface dynamics in heterogeneous landscapes. Although remote sensing technologies have experienced rapid development in recent years, data acquired from a single satellite sensor are often unable to satisfy our demand. As a result, integrated use of data from different sensors has become increasingly popular in the past decade. Many spatiotemporal data fusion methods have been developed to produce synthesized images with both high spatial and temporal resolutions from two types of satellite images, frequent coarse-resolution images, and sparse fine-resolution images. These methods were designed based on different principles and strategies, and therefore show different strengths and limitations. This diversity brings difficulties for users to choose an appropriate method for their specific applications and data sets. To this end, this review paper investigates literature on current spatiotemporal data fusion methods, categorizes existing methods, discusses the principal laws underlying these methods, summarizes their potential applications, and proposes possible directions for future studies in this field.
Keywords: Data blending
Satellite images
Spatial resolution
Spatiotemporal data fusion
Temporal resolution
Publisher: Molecular Diversity Preservation International (MDPI)
Journal: Remote sensing 
EISSN: 2072-4292
DOI: 10.3390/rs10040527
Rights: © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
The following publication Zhu, X., Cai, F., Tian, J., & Williams, T. K. A. (2018). Spatiotemporal fusion of multisource remote sensing data: literature survey, taxonomy, principles, applications, and future directions. Remote Sensing, 10(4), 527 is available at https://doi.org/10.3390/rs10040527
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Zhu_Spatiotemporal_Fusion_Multisource.pdf59.08 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

120
Citations as of May 22, 2022

Downloads

27
Citations as of May 22, 2022

SCOPUSTM   
Citations

156
Citations as of May 20, 2022

WEB OF SCIENCETM
Citations

144
Last Week
0
Last month
Citations as of May 19, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.