Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/4168
PIRA download icon_1.1View/Download Full Text
Title: Explicit formulas for effective piezoelectric coefficients of ferroelectric 0-3 composites based on effective medium theory
Authors: Wong, CK
Poon, YM
Shin, FG
Issue Date: 1-Jan-2003
Source: Journal of applied physics, 1 Jan. 2003, v. 93, no. 1, p. 487-496
Abstract: Explicit formulas were derived for the effective piezoelectric stress coefficients of a 0–3 composite of ferroelectric spherical particles in a ferroelectric matrix which were then combined to give the more commonly used strain coefficients. Assuming that the elastic stiffness of the inclusion phase is sufficiently larger than that of the matrix phase, the previously derived explicit expressions for the case of a low volume concentration of inclusion particles [C. K. Wong, Y. M. Poon, and F. G. Shin, Ferroelectrics 264, 39 (2001); J. Appl. Phys. 90, 4690 (2001)] were "transformed" analytically by an effective medium theory (EMT) with appropriate approximations, to suit the case of a more concentrated suspension. Predictions of the EMT expressions were compared with the experimental values of composites of lead zirconate titanate ceramic particles dispersed in polyvinylidene fluoride and polyvinylidene fluoride-trifluoroethylene copolymer, reported by Furukawa [IEEE Trans. Electr. Insul. 24, 375 (1989)] and by Ng et al. [IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1308 (2000)] respectively. Fairly good agreement was obtained. Comparisons with other predictions, including the predictions given by numerically solving the EMT scheme, were also made. It was found that the analytic and numeric EMT schemes agreed with each other very well for an inclusion of volume fraction not exceeding 60%.
Keywords: Particle reinforced composites
Piezoelectricity
Elastic moduli
Permittivity
Lead compounds
Filled polymers
Ferroelectric ceramics
Piezoceramics
Publisher: American Institute of Physics
Journal: Journal of applied physics 
ISSN: 0021-8979
EISSN: 1089-7550
DOI: 10.1063/1.1524720
Rights: © 2003 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in C. K. Wong, Y. M. Poon & F. G. Shin, J. Appl. Phys. 93, 487 (2003) and may be found at http://link.aip.org/link/?jap/93/487.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Wong_Explicit_effective_theory.pdf150.59 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

81
Last Week
0
Last month
Citations as of May 15, 2022

Downloads

144
Citations as of May 15, 2022

SCOPUSTM   
Citations

16
Last Week
0
Last month
0
Citations as of May 12, 2022

WEB OF SCIENCETM
Citations

15
Last Week
0
Last month
0
Citations as of May 19, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.