Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/2492
PIRA download icon_1.1View/Download Full Text
Title: Raman scattering, electronic, and ferroelectric properties of Nd modified Bi₄Ti₃O₁₂nanotube arrays
Authors: Zhou, D
Gu, H
Hu, Y
Qian, Z
Hu, Z
Yang, K
Zou, Y
Wang, Z
Wang, Y 
Guan, J
Chen, W
Issue Date: 1-May-2010
Source: Journal of applied physics, 1 May 2010, v. 107, no. 9, 094105, p. 1-6
Abstract: Neodymium-modified bismuth titanate, Bi₄−᙮Nd᙮Ti₃O₁₂(BNdT) , nanotube arrays were fabricated by sol-gel method utilizing experimentally prepared porous anodic aluminum oxide (AAO) templates with pore diameters of about 200 nm and 100 nm, respectively. The as-prepared nanotube arrays exhibit orthorhombic perovskite polycrystalline structure of BNdT, which have outer diameters of about 200 and 100 nm, corresponding to the pores diameters of the AAO templates employed, and with wall thicknesses of about 9.7 nm and 12 nm, respectively. The phonon vibration modes corresponding to the Bi atoms in the Bi₂O₂layers weaken and broaden with increasing Nd content. The changes of Raman internal modes originated from the vibrations of atoms inside the TiO₆ octahedral indicate the increase in octahedron tilting and structural distortion. The leakage current and polarization-electric field response curves of BNdT nanotube arrays were measured, and the hysteresis loop illustrates a good ferroelectric property of as-prepared BNdT nanotube array at room temperature. The dielectric constant and dissipation factor were measured in the frequency region from 1 kHz to 1 MHz indicating polarization relaxation phenomenon.
Keywords: Bismuth compounds
Dielectric polarisation
Electronic structure
Ferroelectric materials
Leakage currents
Nanofabrication
Nanotubes
Neodymium
Permittivity
Phonons
Raman spectra
Sol-gel processing
Publisher: American Institute of Physics
Journal: Journal of applied physics 
ISSN: 0021-8979
EISSN: 1089-7550
DOI: 10.1063/1.3407563
Rights: © 2010 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in D. Zhou et al., J. Appl. Phys. 107, 094105 (2010) and may be found at http://link.aip.org/link/?jap/107/094105
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
JApplPhys_107_094105.pdf703.73 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

90
Last Week
2
Last month
Citations as of May 15, 2022

Downloads

225
Citations as of May 15, 2022

SCOPUSTM   
Citations

17
Last Week
0
Last month
0
Citations as of May 12, 2022

WEB OF SCIENCETM
Citations

18
Last Week
0
Last month
0
Citations as of May 12, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.