Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/1134
PIRA download icon_1.1View/Download Full Text
Title: A flood forecasting neural network model with genetic algorithm
Authors: Wu, CL
Chau, KW 
Issue Date: 2006
Source: International journal of environment and pollution, 2006, v. 28, no. 3/4, p. 261-273
Abstract: It will be useful to attain a quick and accurate flood forecasting, particularly in a flood-prone region. The accomplishment of this objective can have far reaching significance by extending the lead time for issuing disaster warnings and furnishing ample time for citizens in vulnerable areas to take appropriate action, such as evacuation. In this paper, a novel hybrid model based on recent artificial intelligence technology, namely, a genetic algorithm (GA)-based artificial neural network (ANN), is employed for flood forecasting. As a case study, the model is applied to a prototype channel reach of the Yangtze River in China. Water levels at downstream station, Han-Kou, are forecasted on the basis of water levels with lead times at the upstream station, Luo-Shan. An empirical linear regression model, a conventional ANN model and a GA model are used as the benchmarks for comparison of performances. The results reveal that the hybrid GA-based ANN algorithm, under cautious treatment to avoid overfitting, is able to produce better accuracy performance, although in expense of additional modeling parameters and possibly slightly longer computation time.
Keywords: Flood forecasting model
Hybrid algorithms
Artificial neural networks
Genetic algorithms
Publisher: Inderscience
Journal: International journal of environment and pollution 
ISSN: 0957-4352 (print)
1741-5101 (online)
DOI: 10.1504/IJEP.2006.011211
Rights: Copyright © 2006 Inderscience Enterprises Ltd. The journal web page at: http://www.inderscience.com/browse/index.php?journalID=9
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
IJEP4.pdfPre-published version218.28 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

197
Last Week
4
Last month
Citations as of Aug 7, 2022

Downloads

304
Citations as of Aug 7, 2022

SCOPUSTM   
Citations

89
Last Week
0
Last month
0
Citations as of Aug 4, 2022

WEB OF SCIENCETM
Citations

79
Last Week
0
Last month
2
Citations as of Aug 4, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.