Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/96744
| Title: | Machine learning (ML) based models for predicting the ultimate strength of rectangular concrete-filled steel tube (CFST) columns under eccentric loading | Authors: | Wang, C Chan, TM |
Issue Date: | 1-Feb-2023 | Source: | Engineering structures, 1 Feb. 2023, v. 276, 115392 | Abstract: | Concrete-filled steel tubes (CFSTs) are popularly used in structural applications. The accurate prediction of their ultimate strength is a key for the safety of the structure. Extensive studies have been conducted on the strength prediction of CFSTs under concentric loading. However, in real situation CFSTs are usually subjected to eccentric loading. The combined compression and bending will result in more complex failure mechanisms at the ultimate strength. The accuracy of methods in design codes is usually limited due to their simplicity. In this study, three machine learning (ML) methods, namely, Support Vector Regression (SVR), Random Forest Regression (RFR), and Neural Networks (NN), are adopted to develop models to predict the ultimate strength of CFSTs under eccentric loading. A database consisting of information of 403 experimental tests from literature is created and statistically analyzed. The database was then split to a training set which was used to optimize and train the ML models, and a test set which was used to evaluate performance of trained ML models. Compared with the methods in two typical design codes, the ML models achieved notable improvement in prediction accuracy. The parametric study revealed that the trained ML models could generally capture the effect of each primary input feature, which was verified by the relevant experimental test results. | Keywords: | Machine learning Concrete-filled steel tube (CFST) Eccentric loading Support vector machine Random forest Neural network |
Publisher: | Pergamon Press | Journal: | Engineering structures | ISSN: | 0141-0296 | EISSN: | 1873-7323 | DOI: | 10.1016/j.engstruct.2022.115392 | Rights: | © 2022 Elsevier Ltd. All rights reserved. © 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ The following publication Wang, C., & Chan, T. M. (2023). Machine learning (ML) based models for predicting the ultimate strength of rectangular concrete-filled steel tube (CFST) columns under eccentric loading. Engineering Structures, 276, 115392 is available at https://doi.org/10.1016/j.engstruct.2022.115392. |
| Appears in Collections: | Journal/Magazine Article |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Wang_Machine_Learning_Based.pdf | Pre-Published version | 3.42 MB | Adobe PDF | View/Open |
Page views
91
Citations as of Apr 14, 2025
Downloads
3
Citations as of Apr 14, 2025
SCOPUSTM
Citations
16
Citations as of Jun 21, 2024
WEB OF SCIENCETM
Citations
33
Citations as of Jan 30, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



