Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/96031
PIRA download icon_1.1View/Download Full Text
Title: Effects of flowing RBCs on adhesion of a circulating tumor cell in microvessels
Authors: Xiao, LL 
Liu, Y 
Chen, S
Fu, BM
Issue Date: Apr-2017
Source: Biomechanics and modeling in mechanobiology, Apr. 2017, v. 16, no. 2, p. 597-610
Abstract: Adhesion of circulating tumor cells (CTCs) to the microvessel wall largely depends on the blood hydrodynamic conditions, one of which is the blood viscosity. Since blood is a non-Newtonian fluid, whose viscosity increases with hematocrit, in the microvessels at low shear rate. In this study, the effects of hematocrit, vessel size, flow rate and red blood cell (RBC) aggregation on adhesion of a CTC in the microvessels were numerically investigated using dissipative particle dynamics. The membrane of cells was represented by a spring-based network connected by elastic springs to characterize its deformation. RBC aggregation was modeled by a Morse potential function based on depletion-mediated assumption, and the adhesion of the CTC to the vessel wall was achieved by the interactions between receptors and ligands at the CTC and those at the endothelial cells forming the vessel wall. The results demonstrated that in the microvessel of 15μm diameter, the CTC has an increasing probability of adhesion with the hematocrit due to a growing wall-directed force, resulting in a larger number of receptor–ligand bonds formed on the cell surface. However, with the increase in microvessel size, an enhanced lift force at higher hematocrit detaches the initial adherent CTC quickly. If the microvessel is comparable to the CTC in diameter, CTC adhesion is independent of Hct. In addition, the velocity of CTC is larger than the average blood flow velocity in smaller microvessels and the relative velocity of CTC decreases with the increase in microvessel size. An increased blood flow resistance in the presence of CTC was also found. Moreover, it was found that the large deformation induced by high flow rate and the presence of aggregation promote the adhesion of CTC.
Keywords: Adhesion
Aggregation
Circulating tumor cell
Dissipative particle dynamics
Red blood cell
Publisher: Springer
Journal: Biomechanics and modeling in mechanobiology 
ISSN: 1617-7959
EISSN: 1617-7940
DOI: 10.1007/s10237-016-0839-5
Rights: © Springer-Verlag Berlin Heidelberg 2016
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use(https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s10237-016-0839-5.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Xiao_Effects_Flowing_Rbcs.pdfPre-Published version905.16 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

28
Last Week
0
Last month
Citations as of May 19, 2024

Downloads

19
Citations as of May 19, 2024

SCOPUSTM   
Citations

36
Citations as of May 16, 2024

WEB OF SCIENCETM
Citations

34
Citations as of May 16, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.