Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/95424
| Title: | Penalized nonparametric likelihood-based inference for current status data model | Authors: | Hao, M Lin, Y Liu, KY Zhao, X |
Issue Date: | 2022 | Source: | Electronic journal of statistics, 2022, v. 16, no. 1, p. 3099-3134 | Abstract: | Deriving the limiting distribution of a nonparametric estimate is rather challenging but of fundamental importance to statistical inference. For the current status data, we study a penalized nonparametric likelihood-based estimator for an unknown cumulative hazard function, and establish the pointwise asymptotic normality of the resulting nonparametric esti-mate. We also propose the penalized likelihood ratio tests for local and global hypotheses, derive their limiting distributions, and study the opti-mality of the global test. Simulation studies show that the proposed method works well compared to the classical likelihood ratio test. | Keywords: | Current status data Functional Bahadur rep-resentation Likelihood ratio test Nonparametric inference Penalized likeli-hood |
Publisher: | Institute of Mathematical Statistics | Journal: | Electronic journal of statistics | EISSN: | 1935-7524 | DOI: | 10.1214/21-EJS1970 | Rights: | This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). The following publication Meiling Hao. Yuanyuan Lin. Kin-yat Liu. Xingqiu Zhao. "Penalized nonparametric likelihood-based inference for current status data model." Electron. J. Statist. 16 (1) 3099 - 3134, 2022 is available at https://doi.org/10.1214/21-EJS1970. |
| Appears in Collections: | Journal/Magazine Article |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Liu_Penalized_nonparametric_likelihood-based.pdf | 480 kB | Adobe PDF | View/Open |
Page views
99
Last Week
0
0
Last month
Citations as of Apr 14, 2025
Downloads
50
Citations as of Apr 14, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



