Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/94440
Title: Behavior of GFRP-concrete double tube composite columns
Authors: Li, S 
Chan, TM 
Young, B 
Issue Date: Sep-2022
Source: Thin-walled structures, Sept. 2022, v. 178, 109490
Abstract: A novel glass fiber-reinforced polymer (GFRP) — concrete double tube composite column, which consists of an outer filament winding GFRP tube, an inner pultruded GFRP tube and infilled core concrete and ring concrete, is proposed in this study. A total of 20 specimens were tested to investigate the structural behavior of the composite column. High strength concrete (HSC) was used as the core concrete filled in the inner pultruded GFRP tube, while engineered cementitious composite (ECC) or normal concrete (NC) with medium compressive strength was used as the ring concrete. Different outer and inner GFRP tube thicknesses were considered. Test results reveal that overall performance of the GFRP-concrete double tube composite columns, especially the deformability, is effectively enhanced in comparison to the corresponding normal GFRP-confined HSC columns. Axial load–strain responses and dilation behavior of the composite column were carefully analyzed. Based on the test results, equations are developed to predict the ultimate load carrying capacity and ultimate axial strain for the proposed GFRP-concrete double tube composite column.
Keywords: Composite column
Confinement
Double tube
Load capacity
Pultruded GFRP
Ultimate axial strain
Publisher: Pergamon Press
Journal: Thin-walled structures 
ISSN: 0263-8231
EISSN: 1879-3223
DOI: 10.1016/j.tws.2022.109490
Appears in Collections:Journal/Magazine Article

Open Access Information
Status embargoed access
Embargo End Date 2024-09-30
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

60
Last Week
1
Last month
Citations as of May 19, 2024

SCOPUSTM   
Citations

22
Citations as of May 16, 2024

WEB OF SCIENCETM
Citations

20
Citations as of May 16, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.