Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/94417
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electronic and Information Engineeringen_US
dc.contributorMainland Development Officeen_US
dc.creatorSingh, Men_US
dc.creatorNg, Aen_US
dc.creatorRen, Zen_US
dc.creatorHu, Hen_US
dc.creatorLin, HCen_US
dc.creatorChu, CWen_US
dc.creatorLi, Gen_US
dc.date.accessioned2022-08-15T08:10:20Z-
dc.date.available2022-08-15T08:10:20Z-
dc.identifier.issn2211-2855en_US
dc.identifier.urihttp://hdl.handle.net/10397/94417-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2019 Published by Elsevier Ltd.en_US
dc.rights© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Singh, M., Ng, A., Ren, Z., Hu, H., Lin, H.-C., Chu, C.-W., & Li, G. (2019). Facile synthesis of composite tin oxide nanostructures for high-performance planar perovskite solar cells. Nano Energy, 60, 275-284. doi:https://doi.org/10.1016/j.nanoen.2019.03.044 is available at https://dx.doi.org/10.1016/j.nanoen.2019.03.044.en_US
dc.subjectBall-millingen_US
dc.subjectTin oxideen_US
dc.subjectElectron transport layeren_US
dc.subjectComposite nanostructureen_US
dc.subjectPerovskite solar cellsen_US
dc.titleFacile synthesis of composite tin oxide nanostructures for high-performance planar perovskite solar cellsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage275en_US
dc.identifier.epage284en_US
dc.identifier.volume60en_US
dc.identifier.doi10.1016/j.nanoen.2019.03.044en_US
dcterms.abstractMetal oxide carrier transporting layers have been investigated widely in organic/inorganic lead halide perovskite solar cells (PSCs). Tin oxide (SnO2) is a promising alternative to the titanium dioxide commonly used in the electron transporting layer (ETL), due to its tunable carrier concentration, high electron mobility, amenability to low-temperature annealing processing, and large energy bandgap. In this study, a facile method was developed for the preparation of a room-temperature-processed SnO2 electron transporting material that provided a high-quality ETL, leading to PSCs displaying high power conversion efficiency (PCE) and stability. A novel physical ball milling method was first employed to prepare chemically pure ground SnO2 nanoparticles (G-SnO2), and a sol–gel process was used to prepare a compact SnO2 (C-SnO2) layer. The effects of various types of ETLs (C-SnO2, G-SnO2, composite G-SnO2/C-SnO2) on the performance of the PSCs are investigated. The composite SnO2 nanostructure formed a robust ETL having efficient carrier transport properties; accordingly, carrier recombination between the ETL and mixed perovskite was inhibited. PSCs incorporating C-SnO2, G-SnO2, and G-SnO2/C-SnO2 as ETLs provided PCEs of 16.46, 17.92, and 21.09%, respectively. In addition to their high efficiency, the devices featuring the composite SnO2 (G-SnO2/C-SnO2) nanostructures possessed excellent long-term stability—they maintained 89% (with encapsulation) and 83% (without encapsulation) of their initial PCEs after 105 days (> 2500 h) and 60 days (> 1400 h), respectively, when stored under dry ambient air (20 ± 5 RH %).en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationNano energy, June 2019, v. 60, p. 275-284en_US
dcterms.isPartOfNano energyen_US
dcterms.issued2019-06-
dc.identifier.isiWOS:000467774100032-
dc.identifier.scopus2-s2.0-85063338556-
dc.identifier.eissn2211-3282en_US
dc.description.validate202208 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera1504-
dc.identifier.SubFormID45199-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
EIE-0375_Ng_Facile_Synthesis_Composite.pdfPre-Published version1.95 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

72
Last Week
1
Last month
Citations as of May 12, 2024

Downloads

25
Citations as of May 12, 2024

SCOPUSTM   
Citations

59
Citations as of May 16, 2024

WEB OF SCIENCETM
Citations

54
Citations as of May 16, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.