Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/94241
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorCao, BXen_US
dc.creatorKong, HJen_US
dc.creatorFan, Len_US
dc.creatorLuan, JHen_US
dc.creatorJiao, ZBen_US
dc.creatorKai, JJen_US
dc.creatorYang, Ten_US
dc.creatorLiu, CTen_US
dc.date.accessioned2022-08-11T01:09:34Z-
dc.date.available2022-08-11T01:09:34Z-
dc.identifier.issn1359-6462en_US
dc.identifier.urihttp://hdl.handle.net/10397/94241-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.rights© 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.en_US
dc.rights© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Cao, B. X., et al. (2021). "Heterogenous columnar-grained high-entropy alloys produce exceptional resistance to intermediate-temperature intergranular embrittlement." Scripta Materialia 194: 113622 is available at https://dx.doi.org/10.1016/j.scriptamat.2020.11.007.en_US
dc.subjectGrain boundary embrittlementen_US
dc.subjectGrain boundary structureen_US
dc.subjectHigh-entropy alloyen_US
dc.subjectPrecipitation strengtheningen_US
dc.titleHeterogenous columnar-grained high-entropy alloys produce exceptional resistance to intermediate-temperature intergranular embrittlementen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume194en_US
dc.identifier.doi10.1016/j.scriptamat.2020.11.007en_US
dcterms.abstractHigh-entropy alloys (HEAs) strengthened by coherent nanoparticles show great potentials for elevated-temperature structural applications, which however, generally suffer from a severe intergranular embrittlement when tested at intermediate temperatures. In this study, we demonstrated a novel “heterogenous columnar-grained” (HCG) approach that can effectively overcome this thorny problem. Different from the equiaxed counterpart which shows extreme brittleness along grain boundaries at 800 °C, the newly developed HCG-HEA exhibits an exceptionally high resistance to intergranular fractures originating from the unique grain-boundary characters and distributions. The presence of heterogenous columnar grain structure drastically suppresses the crack nucleation and propagation along with boundaries, resulting in an unusually large tensile ductility of ~18.4 % combined with a high yield strength of ~652 MPa at 800 °C. This finding provides a new insight into the innovative design of high-temperature materials with extraordinary mechanical properties.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationScripta materialia, 15 Mar. 2021, v. 194, 113622en_US
dcterms.isPartOfScripta materialiaen_US
dcterms.issued2021-03-15-
dc.identifier.scopus2-s2.0-85096692916-
dc.identifier.eissn1872-8456en_US
dc.identifier.artn113622en_US
dc.description.validate202208 bchyen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberME-0099-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS42889102-
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Fan_Heterogenous_Columnar-Grained_High-Entropy.pdfPre-Published version1.43 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

37
Last Week
1
Last month
Citations as of May 12, 2024

Downloads

6
Citations as of May 12, 2024

SCOPUSTM   
Citations

33
Citations as of May 17, 2024

WEB OF SCIENCETM
Citations

27
Citations as of May 16, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.