Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/94188
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estate-
dc.contributorResearch Institute for Sustainable Urban Development-
dc.creatorYu, Jen_US
dc.creatorDai, Yen_US
dc.creatorZhang, Zen_US
dc.creatorLiu, Ten_US
dc.creatorZhao, Sen_US
dc.creatorHe, Qen_US
dc.creatorTan, Pen_US
dc.creatorShao, Zen_US
dc.creatorNi, Men_US
dc.date.accessioned2022-08-11T01:07:43Z-
dc.date.available2022-08-11T01:07:43Z-
dc.identifier.issn0009-2509en_US
dc.identifier.urihttp://hdl.handle.net/10397/94188-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.subjectCarbon nanosheetsen_US
dc.subjectHierarchically porous structureen_US
dc.subjectOxygen reduction reactionen_US
dc.subjectStructural defectsen_US
dc.subjectZn-air batteryen_US
dc.titleNew nitrogen-doped graphitic carbon nanosheets with rich structural defects and hierarchical nanopores as efficient metal-free electrocatalysts for oxygen reduction reaction in Zn-Air batteriesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume259en_US
dc.identifier.doi10.1016/j.ces.2022.117816en_US
dcterms.abstractCarbon materials are highly promising alternative metal-free catalysts for oxygen reduction reaction (ORR), an important element reaction involved in various energy storage/conversion processes, while controllable and fine structural and morphological tunning is key for maximizing the catalytic performance. Here, we report the rational design of hierarchical porous graphitic carbon nanosheets with rich defects (d-pGCS) based on a facile two-step thermal treatment route, delivering superior catalytic ORR performance in alkaline electrolytes. The second thermal treatment is critical in creating such structural defects and nanopores. Through optimizing synthesis parameters, d-pGCS-1000 exhibits outstanding electrocatalytic ORR performance in terms of positive onset potential (0.95 V), half-wave potential (0.82 V), and limiting current density (6.02 mA cm−2). As a proof-of-concept, the obtained Zn-air battery delivers a large open-circuit voltage (1.42 V), high peak power density (182.8 mW cm−2), high specific capacity (773 mAhgZn−1), and good rate performance. Such results are comparable to or even better than the Pt/C-based Zn-air battery.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationChemical engineering science, Sept 2022, v. 259, 117816en_US
dcterms.isPartOfChemical engineering scienceen_US
dcterms.issued2022-09-
dc.identifier.scopus2-s2.0-85132905573-
dc.identifier.artn117816en_US
dc.description.validate202208 bcch-
dc.identifier.FolderNumbera1642, a2552-
dc.identifier.SubFormID45724, 47862-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2024-09-21en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2024-09-21
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

48
Last Week
2
Last month
Citations as of May 19, 2024

SCOPUSTM   
Citations

10
Citations as of May 17, 2024

WEB OF SCIENCETM
Citations

3
Citations as of May 16, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.