Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/94187
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estate-
dc.contributorResearch Institute for Sustainable Urban Development-
dc.contributorResearch Institute for Smart Energy-
dc.creatorBello, ITen_US
dc.creatorYu, Nen_US
dc.creatorZhai, Sen_US
dc.creatorSong, Yen_US
dc.creatorZhao, Sen_US
dc.creatorCheng, Cen_US
dc.creatorZhang, Zen_US
dc.creatorNi, Men_US
dc.date.accessioned2022-08-11T01:07:42Z-
dc.date.available2022-08-11T01:07:42Z-
dc.identifier.issn0272-8842en_US
dc.identifier.urihttp://hdl.handle.net/10397/94187-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.subjectCathodeen_US
dc.subjectCO2 toleranceen_US
dc.subjectLattice contraction and expansionen_US
dc.subjectOxygen reduction reaction activityen_US
dc.subjectSolid oxide fuel cellsen_US
dc.titleEffect of engineered lattice contraction and expansion on the performance and CO2 tolerance of Ba0.5Sr0.5Co0.7Fe0.3O3-δ functional material for intermediate temperature solid oxide fuel cellsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage21457en_US
dc.identifier.epage21468en_US
dc.identifier.volume48en_US
dc.identifier.issue15en_US
dc.identifier.doi10.1016/j.ceramint.2022.04.110en_US
dcterms.abstractBarium Strontium Cobalt Iron Oxide (BSCF) is a famous cathode material for solid oxide fuel cells (SOFCs) due to its excellent catalytic activity for oxygen reduction reaction (ORR) at intermediate and low operating temperatures. Its poor stability, however, in a CO2-containing environment limits its practical application. In this study, we systematically investigate the effects of instigating lattice contraction and expansion on the performance and CO2 tolerance of Ba0.5Sr0.5Co0.7Fe0.3O3-δ (BSCF) air electrode functional material. We strategically substituted 5 mol.% Fe–B-site cations of BSCF with transition metals (TMs), i.e., Zn and Cu, to achieve lattice expansion and contraction, respectively. The Ba0.5Sr0.5Co0.7Fe0.25Cu0.05O3-δ (BSCFC5) cathode, where lattice contraction occurred, exhibits the best performance with an area-specific resistance (ASR) of 0.0247 Ω cm2 and a high peak power density (PPD) of 1715 mW cm−2 at 650 °C for the symmetrical and single cells, respectively. The functional material also exhibits enhanced tolerance to CO2 compared to BSCF by surviving several rounds of 10% CO2 injection and ejection for an overall nonstop testing period of 100 h. The improved ORR, stability, and CO2 tolerance instigated by lattice contraction in BSCF provides an insight into the adoption of this approach in achieving optimal desirable properties in SOFC cathode functional materials.-
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationCeramics international, Aug. 2022, v. 48, no. 15, p. 21457-21468en_US
dcterms.isPartOfCeramics internationalen_US
dcterms.issued2022-08-
dc.identifier.scopus2-s2.0-85128903917-
dc.identifier.eissn1873-3956en_US
dc.description.validate202208 bcch-
dc.identifier.FolderNumbera1642-
dc.identifier.SubFormID45723-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2024-08-01en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2024-08-01
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

49
Last Week
4
Last month
Citations as of May 19, 2024

SCOPUSTM   
Citations

12
Citations as of May 16, 2024

WEB OF SCIENCETM
Citations

12
Citations as of May 16, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.