Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/94146
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Biomedical Engineeringen_US
dc.creatorLiang, Yen_US
dc.creatorXu, Xen_US
dc.creatorXu, Len_US
dc.creatorIqbal, Zen_US
dc.creatorOuyang, Ken_US
dc.creatorZhang, Hen_US
dc.creatorWen, Cen_US
dc.creatorDuan, Len_US
dc.creatorXia, Jen_US
dc.date.accessioned2022-08-11T01:07:25Z-
dc.date.available2022-08-11T01:07:25Z-
dc.identifier.urihttp://hdl.handle.net/10397/94146-
dc.language.isoenen_US
dc.publisherIvyspring International Publisheren_US
dc.rights© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.en_US
dc.rightsThe following publication Liang Y, Xu X, Xu L, Iqbal Z, Ouyang K, Zhang H, Wen C, Duan L, Xia J. Chondrocyte-specific genomic editing enabled by hybrid exosomes for osteoarthritis treatment. Theranostics 2022; 12(11):4866-4878 is available at https://dx.doi.org/10.7150/thno.69368.en_US
dc.subjectCartilageen_US
dc.subjectCRISPR/Cas9en_US
dc.subjectHybrid exosomeen_US
dc.subjectMMP-13en_US
dc.subjectOsteoarthritisen_US
dc.subjectTherapeutic genome editingen_US
dc.titleChondrocyte-specific genomic editing enabled by hybrid exosomes for osteoarthritis treatmenten_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage4866en_US
dc.identifier.epage4878en_US
dc.identifier.volume12en_US
dc.identifier.issue11en_US
dc.identifier.doi10.7150/thno.69368en_US
dcterms.abstractRationale: A cell-specific delivery vehicle is required to achieve gene editing of the disease-associated cells, so the hereditable genome editing reactions are confined within these cells without affecting healthy cells. A hybrid exosome-based nano-sized delivery vehicle derived by fusion of engineered exosomes and liposomes will be able to encapsulate and deliver CRISPR/Cas9 plasmids selectively to chondrocytes embedded in articular cartilage and attenuate the condition of cartilage damage.en_US
dcterms.abstractMethods: Chondrocyte-targeting exosomes (CAP-Exo) were constructed by genetically fusing a chondrocyte affinity peptide (CAP) at the N-terminus of the exosomal surface protein Lamp2b. Membrane fusion of the CAP-Exo with liposomes formed hybrid CAP-exosomes (hybrid CAP-Exo) which were used to encapsulate CRISPR/Cas9 plasmids. By intra-articular (IA) administration, hybrid CAP-Exo/Cas9 sgMMP-13 entered the chondrocytes of rats with cartilage damages that mimicked the condition of osteoarthritis.en_US
dcterms.abstractResults: The hybrid CAP-Exo entered the deep region of the cartilage matrix in arthritic rats on IA administration, delivered the plasmid Cas9 sgMMP-13 to chondrocytes, knocked down the matrix metalloproteinase 13 (MMP-13), efficiently ablated the expression of MMP-13 in chondrocytes, and attenuated the hydrolytic degradation of the extracellular matrix proteins in the cartilage.en_US
dcterms.abstractConclusion: Chondrocyte-specific knockdown of MMP-13 mitigates or prevents cartilage degradation in arthritic rats, showing that hybrid CAP-Exo/Cas9 sgMMP-13 may alleviate osteoarthritis.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationTheranostics, 2022, v. 12, no. 11, p. 4866-4878en_US
dcterms.isPartOfTheranosticsen_US
dcterms.issued2022-
dc.identifier.scopus2-s2.0-85133768458-
dc.identifier.eissn1838-7640en_US
dc.description.validate202208 bcrcen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera1622-
dc.identifier.SubFormID45635-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
v12p4866.pdf2.98 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

66
Last Week
0
Last month
Citations as of May 12, 2024

Downloads

32
Citations as of May 12, 2024

SCOPUSTM   
Citations

68
Citations as of May 16, 2024

WEB OF SCIENCETM
Citations

63
Citations as of May 16, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.