Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/94007
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorGao, Len_US
dc.creatorLiu, Yen_US
dc.creatorTang, Hen_US
dc.creatorDeng, Wen_US
dc.date.accessioned2022-08-11T01:06:24Z-
dc.date.available2022-08-11T01:06:24Z-
dc.identifier.issn2469-990Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/94007-
dc.language.isoenen_US
dc.publisherAmerican Physical Societyen_US
dc.rights©2022 American Physical Societyen_US
dc.rightsThe following publication Gao, L., Liu, Y., Tang, H., & Deng, W. (2022). Response of ~100 micron water jets to intense nanosecond laser blasts. Physical Review Fluids, 7(3), 034001 is available at https://dx.doi.org/10.1103/PhysRevFluids.7.034001.en_US
dc.titleResponse of ∼100 micron water jets to intense nanosecond laser blastsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume7en_US
dc.identifier.issue3en_US
dc.identifier.doi10.1103/PhysRevFluids.7.034001en_US
dcterms.abstractWe performed an experimental study on water microjets of 100 microns in radius ablated in air by both green (532 nm) and near infrared (1064 nm) nanosecond laser pulses with up to 1100 mJ per pulse. We show this affordable and accessible experimental apparatus captures the essence of the water jet response after being ablated by an intense laser pulse. The results reveal that ∼3.5% of laser pulse energy enters the water jet and half reaches the nozzle orifice as far as 50 times the jet diameter away from the ablation point through internal reflections. The energy density absorbed by the nozzle orifice exceeds the damage threshold of stainless steel, causing microexplosions and formation of a liquid sheet near the nozzle orifice.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationPhysical review fluids, Mar. 2022, v. 7, no. 3, 34001'0en_US
dcterms.isPartOfPhysical review fluidsen_US
dcterms.issued2022-
dc.identifier.scopus2-s2.0-85126682861-
dc.identifier.artn34001'0en_US
dc.description.validate202208 bcrcen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera1491-
dc.identifier.SubFormID45151-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
PhysRevFluids.7.034001.pdf2.4 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

54
Last Week
1
Last month
Citations as of May 12, 2024

Downloads

74
Citations as of May 12, 2024

SCOPUSTM   
Citations

2
Citations as of May 16, 2024

WEB OF SCIENCETM
Citations

1
Citations as of May 16, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.