Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/93966
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electrical Engineeringen_US
dc.creatorWu, Yen_US
dc.creatorOr, SWen_US
dc.date.accessioned2022-08-03T08:49:34Z-
dc.date.available2022-08-03T08:49:34Z-
dc.identifier.issn0264-1275en_US
dc.identifier.urihttp://hdl.handle.net/10397/93966-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2018 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Wu, Y., & Or, S. W. (2018). Thickness-dependent structural and electromechanical properties of (Na0. 85K0. 15) 0.5 Bi0. 5TiO3 multilayer thin film-based heterostructures. Materials & Design, 149, 153-164 is available at https://doi.org/10.1016/j.matdes.2018.04.012.en_US
dc.subjectHeterostructuresen_US
dc.subjectInterfacial passive layeren_US
dc.subjectLead-free piezoelectricen_US
dc.subjectMultilayer thin filmsen_US
dc.subjectThickness-dependent propertiesen_US
dc.titleThickness-dependent structural and electromechanical properties of (Na0.85K0.15)0.5Bi0.5TiO3 multilayer thin film-based heterostructuresen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage153en_US
dc.identifier.epage164en_US
dc.identifier.volume149en_US
dc.identifier.doi10.1016/j.matdes.2018.04.012en_US
dcterms.abstract(Na0.85K0.15)0.5Bi0.5TiO3 (NKBT) multilayer thin films with different thicknesses of 100–700 nm, corresponding to 2–14 layers with each layer of ~50 nm thickness, are synthesized on Pt(111)/Ti/SiO2/Si substrates to form Pt/NKBT/Pt/Ti/SiO2/Si heterostructures using different spin-coating and annealing conditions in a modified aqueous sol-gel process. The multilayer thin films spin-coated by two steps (step 1/2) at 600/4000 rpm for 6/30 s and annealed at 700 °C for 5 min with a heating rate of 30 °C/s show a dense, uniform, and continuous morphology as well as a pure perovskite structure with a rhombohedral–tetragonal phase transition at ~140 °C and no preferential orientation in the heterostructures. Their structural and electromechanical properties exhibit consistent improvement trends with increasing thickness from 100 to 550 nm (i.e., 2–11 layers). The 550 nm-thick, 11-layer films demonstrate the best ferroelectric, dielectric, piezoelectric, and electric performance in terms of the highest remnant polarization, saturation polarization, dielectric constant, and effective piezoelectric constant of 18.3 μC/cm2, 53.6 μC/cm2, 463, and 64 pm/V, as well as the lowest coercive field, dielectric loss tangent, and leakage current density of 116 kV/cm, 0.057, and 27 μA/cm2, respectively. The observed thickness-dependent improvement is explained by an interfacial passive layer effect where the motion of both 180° and non-180° domain walls is enhanced in the thicker multilayer thin films by weakening the influence of domain pinning in the interfacial passive layers between the multilayer thin films and the substrates.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMaterials and design, 5 July 2018, v. 149, p. 153-164en_US
dcterms.isPartOfMaterials and designen_US
dcterms.issued2018-07-05-
dc.identifier.scopus2-s2.0-85045553295-
dc.identifier.eissn1873-4197en_US
dc.description.validate202205 bchyen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberEE-0347-
dc.description.fundingSourceRGCen_US
dc.description.fundingTextInnovation and Technology Commission of the HKSAR Goverment to the Hong Kong Branch of National Rail Transit Electrification and Automation Engineering Technology Research Center; National Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6835113-
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Wu_Thickness-Dependent_Structural_Electromechanical.pdfPre-Published version2.45 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

47
Last Week
0
Last month
Citations as of May 12, 2024

Downloads

30
Citations as of May 12, 2024

SCOPUSTM   
Citations

8
Citations as of May 16, 2024

WEB OF SCIENCETM
Citations

8
Citations as of May 16, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.