Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/93867
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorJin, Ben_US
dc.creatorZhou, Zen_US
dc.date.accessioned2022-08-03T01:24:00Z-
dc.date.available2022-08-03T01:24:00Z-
dc.identifier.issn0363-0129en_US
dc.identifier.urihttp://hdl.handle.net/10397/93867-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2021 Society for Industrial and Applied Mathematicsen_US
dc.rightsThe following publication Jin, B., & Zhou, Z. (2021). Numerical estimation of a diffusion coefficient in subdiffusion. SIAM Journal on Control and Optimization, 59(2), 1466-1496 is available at https://doi.org/10.1137/19M1295088en_US
dc.subjectConvergenceen_US
dc.subjectError estimateen_US
dc.subjectFully discrete schemeen_US
dc.subjectParameter identificationen_US
dc.subjectSubdiffusionen_US
dc.subjectTikhonov regularizationen_US
dc.titleNumerical estimation of a diffusion coefficient in subdiffusionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1466en_US
dc.identifier.epage1496en_US
dc.identifier.volume59en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1137/19M1295088en_US
dcterms.abstractIn this work, we consider the numerical recovery of a spatially dependent diffusion coefficient in a subdiffusion model from distributed observations. The subdiffusion model involves a Caputo fractional derivative of order α in (0, 1) in time. The numerical estimation is based on the regularized output least-squares formulation, with an H1(Ω) penalty. We prove the well-posedness of the continuous formulation, e.g., existence and stability. Next, we develop a fully discrete scheme based on the Galerkin finite element method in space and backward Euler convolution quadrature in time. We prove the subsequential convergence of the sequence of discrete solutions to a solution of the continuous problem as the discretization parameters (mesh size and time step size) tend to zero. Further, under an additional regularity condition on the exact coefficient, we derive convergence rates in a weighted L2(Ω) norm for the discrete approximations to the exact coefficient in the one- and two-dimensional cases. The analysis relies heavily on suitable nonstandard nonsmooth data error estimates for the direct problem. We provide illustrative numerical results to support the theoretical study.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on control and optimization, 2021, v. 59, no. 2, p. 1466-1496en_US
dcterms.isPartOfSIAM journal on control and optimizationen_US
dcterms.issued2021-
dc.identifier.scopus2-s2.0-85104336321-
dc.identifier.eissn1095-7138en_US
dc.description.validate202208 bcfcen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberAMA-0059-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS50568362-
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
19m1295088.pdf923.04 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

47
Last Week
1
Last month
Citations as of May 12, 2024

Downloads

41
Citations as of May 12, 2024

SCOPUSTM   
Citations

7
Citations as of May 16, 2024

WEB OF SCIENCETM
Citations

6
Citations as of May 16, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.