Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/93304
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorTang, Ten_US
dc.creatorQiao, Zen_US
dc.date.accessioned2022-06-15T03:42:41Z-
dc.date.available2022-06-15T03:42:41Z-
dc.identifier.issn1674-7216en_US
dc.identifier.urihttp://hdl.handle.net/10397/93304-
dc.language.isozhen_US
dc.publisher《中国科学》杂志社en_US
dc.rights© 2020《中国科学》杂志社en_US
dc.rights© 2020 中国学术期刊电子杂志出版社。本内容的使用仅限于教育、科研之目的。en_US
dc.rights© 2020 China Academic Journal Electronic Publishing House. It is to be used strictly for educational and research use.en_US
dc.subjectAdaptive time-steppingen_US
dc.subjectEnergy stabilityen_US
dc.subjectMaximum bound principleen_US
dc.subjectPhase-field equationen_US
dc.subjectSemi-impliciten_US
dc.title相场方程的高效数值算法en_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage775en_US
dc.identifier.epage794en_US
dc.identifier.volume50en_US
dc.identifier.issue6en_US
dc.identifier.doi10.1360/SSM-2020-0042en_US
dcterms.abstract本文回顾求解相场方程数值方法的一些最新进展. 数值求解相场方程的主要难点在于非线性项 和高阶微分项对时间步长有严格限制, 而相场方程的数值模拟通常需要很长的计算时间才能达到稳定 状态. 众所周知, 相场模型满足一种称为能量稳定的非线性稳定关系, 通常表示为自由能泛函随时间 递减. 如何设计满足离散能量稳定的数值格式, 使得可以进行大时间步长同时又准确地模拟, 近来越 来越受到重视. 本文将针对一些常见的相场方程阐述几类广泛使用的高效数值格式, 以及基于能量随 时间的变化率而设计的一种时间自适应算法, 使得数值解的准确性和算法稳定性得到保证的前提下, 计算效率大大提高.en_US
dcterms.abstractIn this article, we overview recent developments of numerical methods for phase-field equations. The main difficulty for numerically solving phase-field equations is about a severe restriction on the time step due to nonlinearity and high order differential terms, while it usually requires a very long time simulation to reach the steady state. It is known that phase-field models satisfy a nonlinear stability relationship, called energy stability, which means that the free energy functional decays in time. It has attracted more and more attention to design numerical schemes inheriting the energy stability so that the numerical simulation may use large time steps and keep the accuracy. For some popularly studied phase-field equations, this article will present several widely used highly efficient numerical schemes and show an adaptive time-stepping strategy based on the changing rate in time of the energy functional, which could guarantee the accuracy and stability of the numerical solution and improves the computational efficiency significantly.en_US
dcterms.accessRightsopen accessen_US
dcterms.alternativeEfficient numerical methods for phase-field equationsen_US
dcterms.bibliographicCitation中国科学. 数学 (Scientia sinica. Mathematica), 2020, v. 50, no. 6, p. 775-794en_US
dcterms.isPartOf中国科学. 数学 (Scientia sinica. Mathematica)en_US
dcterms.issued2020-
dc.identifier.scopus2-s2.0-85095580731-
dc.identifier.eissn2095-9427en_US
dc.description.validate202206 bcfcen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberAMA-0165-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS22970805-
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Tang_Efficient_Numerical_Methods.pdf795.58 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

141
Last Week
0
Last month
Citations as of May 19, 2024

Downloads

56
Citations as of May 19, 2024

SCOPUSTM   
Citations

16
Citations as of May 9, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.