Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/93292
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorHu, Yen_US
dc.creatorLi, Cen_US
dc.creatorMeng, Ken_US
dc.creatorYang, Xen_US
dc.date.accessioned2022-06-15T03:42:39Z-
dc.date.available2022-06-15T03:42:39Z-
dc.identifier.issn0925-5001en_US
dc.identifier.urihttp://hdl.handle.net/10397/93292-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© Springer Science+Business Media, LLC, part of Springer Nature 2020en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10898-020-00955-3en_US
dc.subjectDescent methodsen_US
dc.subjectInexact approachen_US
dc.subjectLinear convergenceen_US
dc.subjectNonconvex regularizationen_US
dc.subjectProximal gradient algorithmsen_US
dc.subjectSparse optimizationen_US
dc.titleLinear convergence of inexact descent method and inexact proximal gradient algorithms for lower-order regularization problemsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage853en_US
dc.identifier.epage883en_US
dc.identifier.volume79en_US
dc.identifier.issue4en_US
dc.identifier.doi10.1007/s10898-020-00955-3en_US
dcterms.abstractThe ℓp regularization problem with 0 < p< 1 has been widely studied for finding sparse solutions of linear inverse problems and gained successful applications in various mathematics and applied science fields. The proximal gradient algorithm is one of the most popular algorithms for solving the ℓp regularisation problem. In the present paper, we investigate the linear convergence issue of one inexact descent method and two inexact proximal gradient algorithms (PGA). For this purpose, an optimality condition theorem is explored to provide the equivalences among a local minimum, second-order optimality condition and second-order growth property of the ℓp regularization problem. By virtue of the second-order optimality condition and second-order growth property, we establish the linear convergence properties of the inexact descent method and inexact PGAs under some simple assumptions. Both linear convergence to a local minimal value and linear convergence to a local minimum are provided. Finally, the linear convergence results of these methods are extended to the infinite-dimensional Hilbert spaces. Our results cannot be established under the framework of Kurdyka–Łojasiewicz theory.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of global optimization, Apr. 2021, v. 79, no. 4, p. 853-883en_US
dcterms.isPartOfJournal of global optimizationen_US
dcterms.issued2021-04-
dc.identifier.scopus2-s2.0-85092047721-
dc.identifier.eissn1573-2916en_US
dc.description.validate202206 bcfcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0058-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS54285528-
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Yang_Linear_Convergence_Inexact.pdfPre-Published version957.18 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

54
Last Week
0
Last month
Citations as of May 19, 2024

Downloads

41
Citations as of May 19, 2024

SCOPUSTM   
Citations

7
Citations as of May 16, 2024

WEB OF SCIENCETM
Citations

7
Citations as of May 16, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.