Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/92632
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.contributorDepartment of Applied Physicsen_US
dc.creatorXu, ZLen_US
dc.creatorOnofrio, Nen_US
dc.creatorWang, Jen_US
dc.date.accessioned2022-05-04T03:20:43Z-
dc.date.available2022-05-04T03:20:43Z-
dc.identifier.issn2050-7488en_US
dc.identifier.urihttp://hdl.handle.net/10397/92632-
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.rightsThis journal is © The Royal Society of Chemistry 2020en_US
dc.rightsThe following publication Xu, Z. L., Onofrio, N., & Wang, J. (2020). Boosting the anchoring and catalytic capability of MoS2 for high-loading lithium sulfur batteries. Journal of Materials Chemistry A, 8(34), 17646-17656 is available at https://doi.org/10.1039/d0ta05948jen_US
dc.titleBoosting the anchoring and catalytic capability of MoS2 for high-loading lithium sulfur batteriesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage17646en_US
dc.identifier.epage17656en_US
dc.identifier.volume8en_US
dc.identifier.issue34en_US
dc.identifier.doi10.1039/d0ta05948jen_US
dcterms.abstractA high sulfur loading and low electrolyte/sulfur ratio are considered prerequisites for practical high-energy lithium sulfur batteries (LSBs); however, shuttling and the sluggish conversion of flooded polysulfides make it challenging to achieve the full utilization of active materials with an extended cyclic life. Herein, we explore 1T MoS2nanodots as powerful electrocatalyst to overcome this issue. Electrochemical and synchrotronin situX-ray diffraction characterizations revealed that 1T MoS2nanodots with numerous active sites are favored to trap and propel the redox reactions for polysulfides. First-principle calculations indicated that the surface and Mo-terminated edges of 1T MoS2provide stronger anchor sites for Li2S, a lower Li-S decomposition barrier, and faster Li ion migration than those for the 2H phase, which suggest the unique catalytic property for edge-rich 1T MoS2nanodots in LSBs. In the presence of a small amount of 1T MoS2nanodots, porous carbon/Li2S6cathodes exhibited remarkable electrochemical performance retaining a capacity of 9.3 mA h cm−2over 300 cycles under high sulfur loading of 12.9 mg cm−2and a low electrolyte/sulfur ratio of 4.6 μL mg−1, which rivals the performance of the state-of-the-art LSBs. Our combined experimental and theoretical analyses rationalized the use of nanodot catalysts in high energy rechargeable batteries.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of materials chemistry A, 14 Sept. 2020, v. 8, no. 34, p. 17646-17656en_US
dcterms.isPartOfJournal of materials chemistry Aen_US
dcterms.issued2020-09-14-
dc.identifier.scopus2-s2.0-85091046129-
dc.identifier.eissn2050-7496en_US
dc.description.validate202205 bcvcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera1302-
dc.identifier.SubFormID44522-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextthe Research Committee of The Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Xu_Boosting_Anchoring_Catalytic.pdfPre-Published version1.17 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

70
Last Week
1
Last month
Citations as of May 19, 2024

Downloads

147
Citations as of May 19, 2024

SCOPUSTM   
Citations

33
Citations as of May 17, 2024

WEB OF SCIENCETM
Citations

30
Citations as of Apr 25, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.