Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/92548
PIRA download icon_1.1View/Download Full Text
Title: A state-constrained optimal control based trajectory planning strategy for cooperative freeway mainline facilitating and on-ramp merging maneuvers under congested traffic
Authors: Zhou, Y
Chung, E 
Bhaskar, A
Cholette, ME
Issue Date: Dec-2019
Source: Transportation research. Part C, Emerging technologies, Dec. 2019, v. 109, p. 321-342
Abstract: This paper presents a trajectory planning strategy for connected automated vehicles (CAVs) to cooperatively carry out mainline facilitating (i.e. gap development) and on-ramp merging maneuvers. The trajectory planning tasks of the mainline facilitating vehicle and the merging vehicle are formulated as two related optimal control problems. The motivation behind the proposed strategy is to restrain a facilitating maneuver's impact on following traffic. To this end, the proposed strategy bounds the speed of the facilitating maneuver from below and meanwhile ensures that the task of gap development can still be fulfilled. Because of the existence of the speed bound, the optimal control problem of the facilitating vehicle becomes constrained in state, in addition to the control constraints. A Pontryagin Maximum Principle (PMP) with state constraints is applied to rigorously derive the analytical solution. The main difficulty of the analytical procedure exists in the fact that the first-order necessary condition on the extremality of the Hamiltonian cannot yield useful information on the property of the optimal control history with regard to making the optimal speed trajectory to satisfy the speed constraint. As a result, additional conditions have to be explored, notably the so-called “jump conditions”, among others. Taking advantage of the analytical solution, the proposed strategy is then implemented under a model predictive control framework. Simulation assessments of the proposed strategy are conducted at two levels – individual vehicle level and traffic flow level. At the individual vehicle level, the proposed strategy shows potential to reduce the risk of rear-end collision between the facilitating vehicle and the following vehicle, the most vulnerable pair of vehicles under the influence of gap development. At the traffic flow level, coupled with Aimsun, the proposed strategy is assessed under mixed traffic flow conditions, with various penetration rates of CAVs. The results show that it has potential to generate lower speed variations of traffic flow, a critical factor in traffic flow safety. Meanwhile it does not show negative impact on traffic efficiency in the simulation, and is likely to improve traffic efficiency in the real world. A sensitivity analysis of the effect of the facilitating maneuver's lower speed bound is also conducted. Although there exist several limitations with this study, it sheds some light on future research.
Keywords: Connected automated vehicles
Cooperative on-ramp mering
Gap development
Pontryagin Maximum Principle
State-constrained optimal control
Traffic safety
Publisher: Elsevier
Journal: Transportation research. Part C, Emerging technologies 
ISSN: 0968-090X
DOI: 10.1016/j.trc.2019.10.017
Rights: © 2019 Elsevier Ltd. All rights reserved.
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.
The following publication Zhou, Y., Chung, E., Bhaskar, A., & Cholette, M. E. (2019). A state-constrained optimal control based trajectory planning strategy for cooperative freeway mainline facilitating and on-ramp merging maneuvers under congested traffic. Transportation Research Part C: Emerging Technologies, 109, 321-342 is available at https://dx.doi.org/10.1016/j.trc.2019.10.017.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Zhou_Trajectory_Planning_Strategy.pdfPre-Published version10.09 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

37
Last Week
0
Last month
Citations as of May 5, 2024

Downloads

153
Citations as of May 5, 2024

SCOPUSTM   
Citations

48
Citations as of May 3, 2024

WEB OF SCIENCETM
Citations

45
Citations as of May 2, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.