Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/92444
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineeringen_US
dc.contributorMainland Development Officeen_US
dc.creatorLin, Sen_US
dc.creatorYuan, Hen_US
dc.creatorHuang, Xen_US
dc.date.accessioned2022-04-01T01:57:49Z-
dc.date.available2022-04-01T01:57:49Z-
dc.identifier.issn0010-2180en_US
dc.identifier.urihttp://hdl.handle.net/10397/92444-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectExtinction limiten_US
dc.subjectFire spreaden_US
dc.subjectQuenching distanceen_US
dc.subjectSmoldering fireen_US
dc.subjectWall coolingen_US
dc.titleA computational study on the quenching and near-limit propagation of smoldering combustionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume238en_US
dc.identifier.doi10.1016/j.combustflame.2021.111937en_US
dcterms.abstractSmoldering is the slow, low-temperature, and flameless burning of porous fuel and one of the most persistent types of combustion phenomena. The influence of cooling on the smoldering propagation and quenching is of practical significance but still poorly understood. In this work, a physics-based 2-D computational model that integrates heat and mass transfer and heterogeneous chemistry is built to investigate the limiting quenching conditions of in-depth smoldering propagation in a typical biomass sample. Simulation results predict that the smoldering quenching occurs as the sample width decreases or the wall-cooling coefficient increases, agreeing well with experiments. The modelled minimum smoldering temperature is about 350 °C, and the minimum propagation rate is around 0.5 cm/h. Further analysis demonstrates that either the smoldering temperature or propagation rate increases with the sample width and eventually approaches it maximum value. Finally, the influences of the ambient temperature and oxygen level on the smoldering quenching distance are explored. This is the first time to use a comprehensive physics-based model to predict the quenching behavior of smoldering, which provides a deeper understanding of the persistence and extinction limit of smoldering fire phenomena.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationCombustion and flame, Apr. 2022, v. 238, 111937en_US
dcterms.isPartOfCombustion and flameen_US
dcterms.issued2022-04-
dc.identifier.scopus2-s2.0-85121821957-
dc.identifier.artn111937en_US
dc.description.validate202203 bcvcen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera1251-
dc.identifier.SubFormID44363-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNSFCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2024-04-30en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2024-04-30
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

60
Last Week
2
Last month
Citations as of May 12, 2024

SCOPUSTM   
Citations

20
Citations as of May 17, 2024

WEB OF SCIENCETM
Citations

19
Citations as of May 9, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.