Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/92390
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Biomedical Engineeringen_US
dc.creatorHou, Xen_US
dc.creatorQiu, Zen_US
dc.creatorXian, Qen_US
dc.creatorKala, Sen_US
dc.creatorJing, Jen_US
dc.creatorWong, KFen_US
dc.creatorZhu, Jen_US
dc.creatorGuo, Jen_US
dc.creatorZhu, Ten_US
dc.creatorYang, Men_US
dc.creatorSun, Len_US
dc.date.accessioned2022-03-29T04:25:56Z-
dc.date.available2022-03-29T04:25:56Z-
dc.identifier.issn2198-3844en_US
dc.identifier.urihttp://hdl.handle.net/10397/92390-
dc.language.isoenen_US
dc.publisherWiley-VCHen_US
dc.rights© 2021 The Authors. Advanced Science published by Wiley-VCH GmbH.This is an open access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction inany medium, provided the original work is properly cited.en_US
dc.rightsThe following publication Hou, X., Qiu, Z., Xian, Q., Kala, S., Jing, J., Wong, K. F., Zhu, J., Guo, J., Zhu, T., Yang, M., Sun, L., Precise Ultrasound Neuromodulation in a Deep Brain Region Using Nano Gas Vesicles as Actuators. Adv. Sci. 2021, 8, 2101934 is available at https://doi.org/10.1002/advs.202101934en_US
dc.subjectLow-frequency ultrasounden_US
dc.subjectNano gas vesiclesen_US
dc.subjectTranscranial ultrasound stimulationen_US
dc.subjectUltrasonic neuromodulationen_US
dc.titlePrecise ultrasound neuromodulation in a deep brain region using nano gas vesicles as actuatorsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume8en_US
dc.identifier.issue21en_US
dc.identifier.doi10.1002/advs.202101934en_US
dcterms.abstractUltrasound is a promising new modality for non-invasive neuromodulation. Applied transcranially, it can be focused down to the millimeter or centimeter range. The ability to improve the treatment's spatial resolution to a targeted brain region could help to improve its effectiveness, depending upon the application. The present paper details a neurostimulation scheme using gas-filled nanostructures, gas vesicles (GVs), as actuators for improving the efficacy and precision of ultrasound stimuli. Sonicated primary neurons display dose-dependent, repeatable Ca2+ responses, closely synced to stimuli, and increased nuclear expression of the activation marker c-Fos in the presence of GVs. GV-mediated ultrasound triggered rapid and reversible Ca2+ responses in vivo and could selectively evoke neuronal activation in a deep-seated brain region. Further investigation indicate that mechanosensitive ion channels are important mediators of this effect. GVs themselves and the treatment scheme are also found not to induce significant cytotoxicity, apoptosis, or membrane poration in treated cells. Altogether, this study demonstrates a simple and effective method to achieve enhanced and better-targeted neurostimulation with non-invasive low-intensity ultrasound.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAdvanced science, 3 Nov. 2021, v. 8, no. 21, 2101934en_US
dcterms.isPartOfAdvanced scienceen_US
dcterms.issued2021-11-
dc.identifier.scopus2-s2.0-85115231802-
dc.identifier.pmid34546652-
dc.identifier.artn2101934en_US
dc.description.validate202203 bcfcen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera1631-
dc.identifier.SubFormID45672-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextOthers: Innovation and Technology Funden_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Hou_Precise_Ultrasound_Neuromodulation.pdf3.02 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

57
Last Week
1
Last month
Citations as of May 12, 2024

Downloads

41
Citations as of May 12, 2024

SCOPUSTM   
Citations

23
Citations as of May 16, 2024

WEB OF SCIENCETM
Citations

20
Citations as of May 16, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.