Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/89610
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorDu, Qen_US
dc.creatorJu, Len_US
dc.creatorLi, Xen_US
dc.creatorQiao, Zen_US
dc.date.accessioned2021-04-13T06:08:42Z-
dc.date.available2021-04-13T06:08:42Z-
dc.identifier.issn0036-1429en_US
dc.identifier.urihttp://hdl.handle.net/10397/89610-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2019 Society for Industrial and Applied Mathematicsen_US
dc.rightsPosted with permission of the publisher.en_US
dc.rightsThe following publication Du, Q., Ju, L., Li, X., & Qiao, Z. (2019). Maximum Principle Preserving Exponential Time Differencing Schemes for the Nonlocal Allen--Cahn Equation. SIAM Journal on Numerical Analysis, 57(2), 875-898 is available at https://doi.org/10.1137/18M118236X.en_US
dc.subjectAsymptotic compatibilityen_US
dc.subjectDiscrete maximum principleen_US
dc.subjectEnergy stabilityen_US
dc.subjectExponential time differencingen_US
dc.subjectNonlocal Allen-Cahn equationen_US
dc.titleMaximum principle preserving exponential time differencing schemes for the nonlocal Allen--Cahn equationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage875en_US
dc.identifier.epage898en_US
dc.identifier.volume57en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1137/18M118236Xen_US
dcterms.abstractThe nonlocal Allen-Cahn equation, a generalization of the classic Allen-Cahn equation by replacing the Laplacian with a parameterized nonlocal diffusion operator, satisfies the maximum principle as its local counterpart. In this paper, we develop and analyze first and second order exponential time differencing schemes for solving the nonlocal Allen-Cahn equation, which preserve the discrete maximum principle unconditionally. The fully discrete numerical schemes are obtained by applying the stabilized exponential time differencing approximations for time integration with quadrature-based finite difference discretization in space. We derive their respective optimal maximum-norm error estimates and further show that the proposed schemes are asymptotically compatible, i.e., the approximating solutions always converge to the classic Allen-Cahn solution when the horizon, the spatial mesh size, and the time step size go to zero. We also prove that the schemes are energy stable in the discrete sense. Various experiments are performed to verify these theoretical results and to investigate numerically the relation between the discontinuities and the nonlocal parameters.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on numerical analysis, 2019, v. 57, no. 2, p. 875-898en_US
dcterms.isPartOfSIAM journal on numerical analysisen_US
dcterms.issued2019-
dc.identifier.scopus2-s2.0-85065548926-
dc.identifier.eissn1095-7170en_US
dc.description.validate202104 bcvcen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera0711-n03-
dc.identifier.SubFormID1199-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingText15302214, 15325816en_US
dc.description.fundingText1-ZE33en_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
a0711-n03_1199_18m118236x.pdf1.6 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

90
Last Week
0
Last month
Citations as of Apr 28, 2024

Downloads

25
Citations as of Apr 28, 2024

SCOPUSTM   
Citations

156
Citations as of Apr 26, 2024

WEB OF SCIENCETM
Citations

152
Citations as of May 2, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.