Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/89596
PIRA download icon_1.1View/Download Full Text
Title: Unconditionally stable, efficient and robust numerical simulation of isothermal compositional grading by gravity
Authors: Fan, X
Qiao, Z 
Sun, S
Issue Date: May-2020
Source: Journal of computational science, May 2020, v. 43, 101109
Abstract: The gravitational force has been considered as one of the most important factors leading to composition variation of multicomponent chemical species mixture in many industrial processes and natural phenomena. This has been largely studied through experimental and numerical modeling, especially in chemical processes and petroleum reservoir engineering. The modeling and simulation of dynamical process of composition variation under gravity is fundamentally important to understand the evolutionary process of petroleum reservoir formation and initial state. This work presents the dynamical modeling of composition variation in the framework of the modified Helmholtz free energy coupling with the realistic equations of state. An efficient, easy-to-implement, thermodyanmically consistent, and robust numerical scheme is proposed for the dynamical model. This scheme is rigorously proved to be unconditionally stable. The implementation is straightforward based on the single-component system and it is not required to choose a reference species for multicomponent fluids. For the multicomponent system of huge number of species, the proposed scheme allows to numerically compute the system of partial differential equations in a random order, which is called an “unbiased scheme” in this work. The current scheme is computationally efficient and saves computer memory. Several numerical examples are designed to verify the properties of the scheme.
Keywords: Compositional variation
Convex splitting
Gravity effect
The Peng–Robinson equation of state
Thermodynamically consistent schemes
Unbiased schemes
Publisher: Elsevier
Journal: Journal of computational science 
ISSN: 1877-7503
DOI: 10.1016/j.jocs.2020.101109
Rights: © 2020 Elsevier B.V. All rights reserved.
© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.
The following publication Fan, X., Qiao, Z., & Sun, S. (2020). Unconditionally stable, efficient and robust numerical simulation of isothermal compositional grading by gravity. Journal of Computational Science, 43, 101109 is available at https://dx.doi.org/10.1016/j.jocs.2020.101109.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Fan_Unconditionally_Isothermal_Gravity.pdfPre-Published version2.53 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

62
Last Week
0
Last month
Citations as of Apr 28, 2024

Downloads

18
Citations as of Apr 28, 2024

SCOPUSTM   
Citations

2
Citations as of Apr 26, 2024

WEB OF SCIENCETM
Citations

2
Citations as of May 2, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.