Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/88951
| Title: | Predicting origin-destination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional network | Authors: | Ke, J Qin, X Yang, H Zheng, Z Zhu, Z Ye, J |
Issue Date: | Jan-2021 | Source: | Transportation research. Part C, Emerging technologies, Jan. 2021, 102858 | Abstract: | With the rapid development of mobile-internet technologies, on-demand ride-sourcing services have become increasingly popular and largely reshaped the way people travel. Demand prediction is one of the most fundamental components in supply-demand management systems of ride-sourcing platforms. With an accurate short-term prediction for origin-destination (OD) demand, the platforms make precise and timely decisions on real-time matching, idle vehicle reallocations, and ride-sharing vehicle routing, etc. Compared to the zone-based demand prediction that has been examined in many previous studies, OD-based demand prediction is more challenging. This is mainly due to the complicated spatial and temporal dependencies among the demand of different OD pairs. To overcome this challenge, we propose the Spatio-Temporal Encoder-Decoder Residual Multi-Graph Convolutional network (ST-ED-RMGC), a novel deep learning model for predicting ride-sourcing demand of various OD pairs. Firstly, the model constructs OD graphs, which utilize adjacent matrices to characterize the non-Euclidean pair-wise geographical and semantic correlations among different OD pairs. Secondly, based on the constructed graphs, a residual multi-graph convolutional (RMGC) network is designed to encode the contextual-aware spatial dependencies, and a long-short term memory (LSTM) network is used to encode the temporal dependencies, into a dense vector space. Finally, we reuse the RMGC networks to decode the compressed vector back to OD graphs and predict the future OD demand. Through extensive experiments on the for-hire-vehicles datasets in Manhattan, New York City, we show that our proposed deep learning framework outperforms the state-of-arts by a significant margin. | Keywords: | Correlation adjacent matrix Deep learning model Multi-Graph convolutional neural network OD demand prediction Spatio-Temporal feature |
Publisher: | Pergamon Press | Journal: | Transportation research. Part C, Emerging technologies | ISSN: | 0968-090X | DOI: | 10.1016/j.trc.2020.102858 | Rights: | © 2020 Elsevier Ltd. All rights reserved. © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/. The following publication Ke, J., Qin, X., Yang, H., Zheng, Z., Zhu, Z., & Ye, J. (2021). Predicting origin-destination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional network. Transportation Research Part C: Emerging Technologies, 122, 102858 is available at https://dx.doi.org/10.1016/j.trc.2020.102858. |
| Appears in Collections: | Journal/Magazine Article |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Ke_Origin-destination_Ride-sourcing_Demand.pdf | Pre-Published version | 2.8 MB | Adobe PDF | View/Open |
Page views
127
Last Week
0
0
Last month
Citations as of Apr 14, 2025
Downloads
229
Citations as of Apr 14, 2025
SCOPUSTM
Citations
168
Citations as of Dec 19, 2025
WEB OF SCIENCETM
Citations
96
Citations as of Oct 10, 2024
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



