Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/88646
PIRA download icon_1.1View/Download Full Text
Title: Ion transport characteristics in membranes for direct formate fuel cells
Authors: Su, XY 
Pan, ZF 
An, L 
Issue Date: Aug-2020
Source: Frontiers in chemistry, Aug. 2020, v. 8, 765, p. 1-16
Abstract: Ion exchange membranes are widely used in fuel cells to physically separate two electrodes and functionally conduct charge-carrier ions, such as anion exchange membranes and cation exchange membranes. The physiochemical characteristics of ion exchange membranes can affect the ion transport processes through the membrane and thus the fuel cell performance. This work aims to understand the ion transport characteristics through different types of ion exchange membrane in direct formate fuel cells. A one-dimensional model is developed and applied to predict the polarization curves, concentration distributions of reactants/products, distributions of three potentials (electric potential, electrolyte potential, and electrode potential) and the local current density in direct formate fuel cells. The effects of the membrane type and membrane thickness on the ion transport process and thus fuel cell performance are numerically investigated. In addition, particular attention is paid to the effect of the anion-cation conducting ratio of the membrane, i.e., the ratio of the anionic current to the cationic current through the membrane, on the fuel cell performance. The modeling results show that, when using an anion exchange membrane, both formate and hydroxide concentrations in the anode catalyst layer are higher than those achieved by using a cation exchange membrane. Although a thicker membrane better alleviates the fuel crossover phenomenon, increasing the membrane thickness will increase the ohmic loss, due to the enlarged ion-transport distance through the membrane. It is further found that increasing the anion-cation conducting ratio will upgrade the fuel cell performance via three mechanisms: (i) providing a higher ionic conductivity and thus reducing the ohmic loss; (ii) enabling more OH(-)ions to transport from the cathode to the anode and thus increasing the OH(-)concentration in the anode catalyst layer; and (iii) accumulating more cations in the anode and thus enhancing the formate-ion migration to the anode catalyst layer for the anodic reaction.
Keywords: Direct formate fuel cells
Ion exchange membranes
Ion transport
Charge-Carrier ions
Concentration distribution
Potential distribution
Publisher: Frontiers Media SA
Journal: Frontiers in chemistry 
EISSN: 2296-2646
DOI: 10.3389/fchem.2020.00765
Rights: Copyright © 2020 Su, Pan and An. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (https://creativecommons.org/licenses/by/4.0/). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
The following publication Su X, Pan Z and An L (2020). Ion Transport Characteristics in Membranes for Direct Formate Fuel Cells. Front. Chem. 8:765 is available at https://dx.doi.org/10.3389/fchem.2020.00765
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Su_Ion_Transport_Membranes.pdf4.84 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

41
Last Week
0
Last month
Citations as of Apr 28, 2024

Downloads

24
Citations as of Apr 28, 2024

SCOPUSTM   
Citations

9
Citations as of Apr 26, 2024

WEB OF SCIENCETM
Citations

9
Last Week
0
Last month
Citations as of May 2, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.