Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/886
Title: Inclusion of interbar currents in a network-field coupled time-stepping finite-element model of skewed-rotor induction motors
Authors: Ho, SL 
Li, HL
Fu, W 
Keywords: Finite element methods
Induction motors
Issue Date: Sep-1999
Publisher: IEEE
Source: IEEE transactions on magnetics, Sept. 1999, v. 35, no. 5, p. 4218-4225 How to cite?
Journal: IEEE transactions on magnetics 
Abstract: In order to include the interbar currents of skewed-rotor inductor motors in finite-element analysis, a three-dimensional (3-D) model is usually necessary. In this paper a two-dimensional multislice time-stepping finite element method of skewed-rotor induction motors is presented to solve such complicated 3-D problems. It is shown that the network of the rotor cage is coupled to finite-element equations so that the interbar currents in the rotor can be taken into account, By arranging the unknowns and mesh-current equations ingeniously, the resultant coefficient matrix of the global system equations are made symmetrical. Compared with 3-D finite-element methods, the computation time for solving field equations with the proposed method is significantly shorter. The model can be used to estimate the high-order harmonic stray losses in induction motors. A comparison between computed and tested results is also given.
URI: http://hdl.handle.net/10397/886
ISSN: 0018-9464
DOI: 10.1109/20.799070
Rights: © 1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
time-stepping_99.pdf503.83 kBAdobe PDFView/Open
Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

41
Last Week
0
Last month
0
Citations as of Jun 4, 2016

WEB OF SCIENCETM
Citations

35
Last Week
0
Last month
0
Citations as of Dec 7, 2016

Page view(s)

443
Last Week
0
Last month
Checked on Dec 4, 2016

Download(s)

1,916
Checked on Dec 4, 2016

Google ScholarTM

Check

Altmetric



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.