Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/87962
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorQi, Xen_US
dc.creatorLo, TWen_US
dc.creatorLiu, Den_US
dc.creatorFeng, Len_US
dc.creatorChen, Yen_US
dc.creatorWu, Yen_US
dc.creatorRen, Hen_US
dc.creatorGuo, GCen_US
dc.creatorLei, Den_US
dc.creatorRen, Xen_US
dc.date.accessioned2020-09-04T00:53:14Z-
dc.date.available2020-09-04T00:53:14Z-
dc.identifier.urihttp://hdl.handle.net/10397/87962-
dc.language.isoenen_US
dc.publisherDe Gruyteren_US
dc.rights© 2020 Xiaozhuo Qi et al., published by De Gruyter, Berlin/Boston. This work is licensed under the Creative Commons Attribution 4.0 International License. BY 4.0en_US
dc.rightsThe following publication Qi, X., Lo, T. W., Liu, D., Feng, L., Chen, Y., Wu, Y., ... & Ren, X. (2020). Effects of gap thickness and emitter location on the photoluminescence enhancement of monolayer MoS2 in a plasmonic nanoparticle-film coupled system. Nanophotonics, v. 9, no. 7, p. 2097–2105, is available at https://doi.org/10.1515/nanoph-2020-0178en_US
dc.subjectNanoparticle-film coupled systemen_US
dc.subjectPhotoluminescence enhancementen_US
dc.subjectPlasmonic nanocavityen_US
dc.subjectTransition-metal dichalcogenidesen_US
dc.titleEffects of gap thickness and emitter location on the photoluminescence enhancement of monolayer MoS2 in a plasmonic nanoparticle-film coupled systemen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage2097en_US
dc.identifier.epage2105en_US
dc.identifier.volume9en_US
dc.identifier.issue7en_US
dc.identifier.doi10.1515/nanoph-2020-0178en_US
dcterms.abstractPlasmonic nanocavities comprised of metal film-coupled nanoparticles have emerged as a versatile nanophotonic platform benefiting from their ultrasmall mode volume and large Purcell factors. In the weak-coupling regime, the particle-film gap thickness affects the photoluminescence (PL) of quantum emitters sandwiched therein. Here, we investigated the Purcell effect-enhanced PL of monolayer MoS2 inserted in the gap of a gold nanoparticle (AuNP)-alumina (Al2O3)-gold film (Au Film) structure. Under confocal illumination by a 532 nm CW laser, we observed a 7-fold PL peak intensity enhancement for the cavity-sandwiched MoS2 at an optimal Al2O3 thickness of 5 nm, corresponding to a local PL enhancement of ∼350 by normalizing the actual illumination area to the cavity's effective near-field enhancement area. Full-wave simulations reveal a counterintuitive fact that radiation enhancement comes from the non-central area of the cavity rather than the cavity center. By scanning an electric dipole across the nanocavity, we obtained an average radiation enhancement factor of about 65 for an Al2O3 spacer thickness of 4 nm, agreeing well with the experimental thickness and indicating further PL enhancement optimization. Our results indicate the importance of configuration optimization, emitter location and excitation condition when using such plasmonic nanocavities to modulate the radiation properties of quantum emitters.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationNanophotonics, 2020, v. 9, no. 7, p. 2097–2105en_US
dcterms.isPartOfNanophotonicsen_US
dcterms.issued2020-
dc.identifier.scopus2-s2.0-85085903256-
dc.identifier.eissn2192-8614en_US
dc.description.validate202009 bcmaen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOS-
dc.description.pubStatusPublisheden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Qi_Effects_gap_thickness.pdf1.23 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

50
Last Week
0
Last month
Citations as of May 12, 2024

Downloads

19
Citations as of May 12, 2024

SCOPUSTM   
Citations

25
Citations as of May 16, 2024

WEB OF SCIENCETM
Citations

23
Citations as of May 16, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.