Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/87762
PIRA download icon_1.1View/Download Full Text
Title: Distribution power loss reduction of standalone DC microgrids using adaptive differential evolution-based control for distributed battery systems
Authors: Deng, JL
Mao, Y 
Yang, Y
Issue Date: 1-May-2020
Source: Energies, 1 May 2020, v. 13, no. 9, 2129, p. 1-15
Abstract: With high penetrations of renewable energy sources (RES), distributed battery systems (DBS) are widely adopted in standalone DC microgrids to stabilize the bus voltages by balancing the active power. This paper presents an Adaptive Differential Evolution (ADE)-based hierarchical control for DBS to achieve online distribution power loss mitigation as well as bus voltage regulations in standalone DC microgrids. The hierarchical control comprises two layers, i.e., ADE for the secondary layer and local proportional-integral (PI) control for the primary layer. The secondary layer control provides the bus voltage references for the primary control by optimizing the fitness function, which contains the parameters of the bus voltage deviations and the power loss on the distribution lines. Simultaneously, the state-of-charge (SoC) of the battery packs are controlled by local controllers to prevent over-charge and deep-discharge. Case studies using a Real-Time Digital Simulator (RTDS) validate that the proposed ADE-based hierarchical control can effectively reduce the distribution power loss and regulate the bus voltages within the tolerances in DC microgrids.
Keywords: Distributed battery system (DBS)
DC microgrid
Adaptive Differential Evolution (ADE)
Hierarchical control
Distribution power loss
Bus voltage regulation
Publisher: Molecular Diversity Preservation International
Journal: Energies 
EISSN: 1996-1073
DOI: 10.3390/en13092129
Rights: © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
The following publication Deng, J.; Mao, Y.; Yang, Y. Distribution Power Loss Reduction of Standalone DC Microgrids Using Adaptive Differential Evolution-Based Control for Distributed Battery Systems. Energies 2020, 13, 2129 is available at https://dx.doi.org/10.3390/en13092129
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Deng_Power_Loss_Reduction.pdf5.31 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

43
Last Week
0
Last month
Citations as of May 5, 2024

Downloads

26
Citations as of May 5, 2024

SCOPUSTM   
Citations

22
Citations as of Apr 26, 2024

WEB OF SCIENCETM
Citations

14
Citations as of May 2, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.