Please use this identifier to cite or link to this item:
Title: Massive automatic identification system sensor trajectory data-based multi-layer linkage network dynamics of maritime transport along 21st-century maritime Silk Road
Authors: Yu, H
Fang, Z
Lu, F
Murray, AT
Zhao, Z
Xu, Y 
Yang, X
Keywords: Maritime network
Multi-layer dynamics
Traffic flow
Issue Date: 2019
Publisher: Molecular Diversity Preservation International (MDPI)
Source: Sensors (Switzerland), 2019, v. 19, no. 19, 4197 How to cite?
Journal: International journal of environmental research and public health 
Abstract: Automatic Identification System (AIS) data could support ship movement analysis, and maritime network construction and dynamic analysis. This study examines the global maritime network dynamics from multi-layers (bulk, container, and tanker) and multidimensional (e.g., point, link, and network) structure perspectives. A spatial-temporal framework is introduced to construct and analyze the global maritime transportation network dynamics by means of big trajectory data. Transport capacity and stability are exploited to infer spatial-temporal dynamics of system nodes and links. Maritime network structure changes and traffic flow dynamics grouping are then possible to extract. This enables the global maritime network between 2013 and 2016 to be investigated, and the differences between the countries along the 21st-century Maritime Silk Road and other countries, as well as the differences between before and after included by 21st-century Maritime Silk Road to be revealed. Study results indicate that certain countries, such as China, Singapore, Republic of Korea, Australia, and United Arab Emirates, build new corresponding shipping relationships with some ports of countries along the Silk Road and these new linkages carry significant traffic flow. The shipping dynamics exhibit interesting geographical and spatial variations. This study is meaningful to policy formulation, such as cooperation and reorientation among international ports, evaluating the adaptability of a changing traffic flow and navigation environment, and integration of the maritime economy and transportation systems.
ISSN: 1424-8220
DOI: 10.3390/s19194197
Rights: © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (
The following publication Yu, H., Fang, Z., Lu, F., Murray, A. T., Zhao, Z., Xu, Y., & Yang, X. (2019). Massive Automatic Identification System Sensor Trajectory Data-Based Multi-Layer Linkage Network Dynamics of Maritime Transport along 21st-Century Maritime Silk Road. Sensors, 19(19), 4197, is available at
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Yu_Massive_automatic_identification.pdf3.86 MBAdobe PDFView/Open
View full-text via PolyU eLinks SFX Query
Show full item record
PIRA download icon_1.1View/Download Contents

Page view(s)

Citations as of Feb 19, 2020


Citations as of Feb 19, 2020

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.