Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorWang, QAen_US
dc.contributor.authorNi, YQen_US
dc.identifier.citationSensors (Switzerland), 2019, v. 19, no. 15, 3311en_US
dc.description.abstractUncertainty in sensor data complicates the construction of baseline models for the measurement and forecasting (M&F) of high-speed rail (HSR) track slab deformation. Standard Gaussian process (GP) assumes a uniform noise throughout the input space. However, in the application to modelling of HSR structural health monitoring (SHM) data, this assumption can be unrealistic, because of its unique heteroscedastic uncertainty that is induced by dynamic train loading, electromagnetic interference, large temperature variation, and daily maintenance actions of railway track infrastructure. Therefore, this study firstly develops a novel online SHM system enabled by fiber Bragg grating (FBG) technology to eliminate electromagnetic interference on SHM data for continuous and long-term monitoring of track slab deformation, with the capacity of temperature self-compensation. To deal with different sources of uncertainty, the study explores Variational Heteroscedastic Gaussian Process (VHGP) approach while using variational Bayesian and Gaussian approximation for data modelling, estimation of the monitoring data uncertainty, and further data forecasting. The results demonstrate that the VHGP framework yields more robust regression results and the estimated confidence level can better depict the heteroscedastic variances of the noise in HSR data. Higher accuracy for both regression and forecasting is gained through VHGP and the position with maximum noise can be more accurately forecasted with a smooth varying confidence interval. Based on in-situ measurement data, the uncertainty levels for all sensors are estimated together with corresponding deformation profiles for the instrumented segment and three typical types of uncertainty are summarized during the M&F process of HSR track slab deformation.en_US
dc.description.sponsorshipDepartment of Civil and Environmental Engineeringen_US
dc.publisherMolecular Diversity Preservation International (MDPI)en_US
dc.relation.ispartofSensors (Switzerland)en_US
dc.rights© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (
dc.rightsThe following publication Wang Q-A, Ni Y-Q. Measurement and Forecasting of High-Speed Rail Track Slab Deformation under Uncertain SHM Data Using Variational Heteroscedastic Gaussian Process. Sensors. 2019; 19(15):3311, is available at
dc.subjectFiber Bragg gratingen_US
dc.subjectHeteroscedastic Gaussian Processen_US
dc.subjectHigh-speed railen_US
dc.subjectMeasurement and forecastingen_US
dc.subjectStructural health monitoringen_US
dc.titleMeasurement and forecasting of high-speed rail track slab deformation under uncertain SHM data using variational heteroscedastic gaussian processen_US
dc.typeJournal/Magazine Articleen_US
dc.description.validate201910 bcma-
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Wang_Measurement_forecasting_high-speed.pdf2.18 MBAdobe PDFView/Open
View full-text via PolyU eLinks SFX Query
Show simple item record
PIRA download icon_1.1View/Download Contents

Page view(s)

Citations as of Dec 11, 2019


Citations as of Dec 11, 2019

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.