Please use this identifier to cite or link to this item:
                
				
				
				
       http://hdl.handle.net/10397/81532
				
				| DC Field | Value | Language | 
|---|---|---|
| dc.contributor | Department of Civil and Environmental Engineering | - | 
| dc.creator | Riahi-Madvar, H | en_US | 
| dc.creator | Dehghani, M | en_US | 
| dc.creator | Seifi, A | en_US | 
| dc.creator | Salwana, E | en_US | 
| dc.creator | Shamshirband, S | en_US | 
| dc.creator | Mosavi, A | en_US | 
| dc.creator | Chau, KW | en_US | 
| dc.date.accessioned | 2019-10-28T05:45:57Z | - | 
| dc.date.available | 2019-10-28T05:45:57Z | - | 
| dc.identifier.issn | 1994-2060 | en_US | 
| dc.identifier.uri | http://hdl.handle.net/10397/81532 | - | 
| dc.language.iso | en | en_US | 
| dc.publisher | Hong Kong Polytechnic University, Department of Civil and Structural Engineering | en_US | 
| dc.rights | © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. | en_US | 
| dc.rights | The following publication Hossien Riahi-Madvar, Majid Dehghani, Akram Seifi, Ely Salwana, Shahaboddin Shamshirband, Amir Mosavi & Kwok-wing Chau (2019) Comparative analysis of soft computing techniques RBF, MLP, and ANFIS with MLR and MNLR for predicting grade-control scour hole geometry, Engineering Applications of Computational Fluid Mechanics, 13:1, 529-550, is available at https://doi.org/10.1080/19942060.2019.1618396 | en_US | 
| dc.subject | Alluvial channels | en_US | 
| dc.subject | Artificial intelligence | en_US | 
| dc.subject | Big data | en_US | 
| dc.subject | Grade control structure | en_US | 
| dc.subject | Radial basis functions | en_US | 
| dc.subject | Scour geometry | en_US | 
| dc.title | Comparative analysis of soft computing techniques RBF, MLP, and ANFIS with MLR and MNLR for predicting grade-control scour hole geometry | en_US | 
| dc.type | Journal/Magazine Article | en_US | 
| dc.identifier.spage | 529 | en_US | 
| dc.identifier.epage | 550 | en_US | 
| dc.identifier.volume | 13 | en_US | 
| dc.identifier.issue | 1 | en_US | 
| dc.identifier.doi | 10.1080/19942060.2019.1618396 | en_US | 
| dcterms.abstract | The main aims and contributions of the present paper are to use new soft computing methods for the simulation of scour geometry (depth/height and locations) in a comparative framework. Five models were used for the prediction of the dimension and location of the scour pit. The five developed models in this study are multilayer perceptron (MLP) neural network, radial basis functions (RBF) neural network, adaptive neuro fuzzy inference systems (ANFIS), multiple linear regression (MLR), and multiple non-linear regression (MNLR) in comparison with empirical equations. Four non-dimensional geometry parameters of scour hole shape are predicted by these models including the maximum scour depth (S), the distance of S from the weir (XS), the maximum height of downstream deposited sediments (hd), and distance of hd from the weir (XD). The best results over train data derived for XS/Z and hd/Z by the MLP model with R2 are 0.95 and 0.96 respectively; the best predictions for S/Z and XD/Z are from the ANFIS model with R2 0.91 and 0.96 respectively. The results indicate that the application of MLP and ANFIS results in the accurate prediction of scour geometry for the designing of stable grade control structures in alluvial irrigation channels. | - | 
| dcterms.accessRights | open access | en_US | 
| dcterms.bibliographicCitation | Engineering applications of computational fluid mechanics, 2019, v. 13, no. 1, p. 529-550 | en_US | 
| dcterms.isPartOf | Engineering applications of computational fluid mechanics | en_US | 
| dcterms.issued | 2019 | - | 
| dc.identifier.scopus | 2-s2.0-85069530236 | - | 
| dc.identifier.eissn | 1997-003X | en_US | 
| dc.description.validate | 201910 bcma | - | 
| dc.description.oa | Version of Record | en_US | 
| dc.identifier.FolderNumber | OA_Scopus/WOS | - | 
| dc.description.pubStatus | Published | en_US | 
| dc.description.oaCategory | CC | en_US | 
| Appears in Collections: | Journal/Magazine Article | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Riahi-Madvar_Comparative_analysis_soft-computing.pdf | 4.9 MB | Adobe PDF | View/Open | 
Page views
187
			Last Week
			
1
		1
			Last month
			
						
					
					
						
							
						
						
					
							
					
								
		
	
			Citations as of Apr 14, 2025
		
	Downloads
134
			Citations as of Apr 14, 2025
		
	SCOPUSTM   
 Citations
		
		
		
		
		
				
		
		
		
			48
		
		
		
				
		
		
		
		
	
			Citations as of Oct 31, 2025
		
	WEB OF SCIENCETM
 Citations
		
		
		
		
		
				
		
		
		
			36
		
		
		
				
		
		
		
		
	
			Citations as of Dec 19, 2024
		
	 
	Google ScholarTM
		
		
   		    Check
	Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



