Please use this identifier to cite or link to this item:
                
				
				
				
       http://hdl.handle.net/10397/80910
				
				| Title: | Multi-pattern data mining and recognition of primary electric appliances from single non-intrusive load monitoring data | Authors: | Du, S Li, M Han, S Shi, J Li, H  | 
Issue Date: | 2019 | Source: | Energies, 2019, v. 12, no. 6, en12060992 | Abstract: | The electric power industry is an essential part of the energy industry as it strengthens the monitoring and control management of household electricity for the construction of an economic power system. In this paper, a non-intrusive affinity propagation (AP) clustering algorithm is improved according to the factor graph model and the belief propagation theory. The energy data of non-intrusive monitoring consists of the actual energy consumption data of each electronic appliance. The experimental results show that this improved algorithm identifies the basic and combined class of home appliances. According to the possibility of conversion between different classes, the combination of classes is broken down into different basic classes. This method provides the basis for power management companies to allocate electricity scientifically and rationally. | Keywords: | AP clustering algorithm Data mining Electrical appliance Pattern recognition Power load decomposition  | 
Publisher: | Molecular Diversity Preservation International (MDPI) | Journal: | Energies | EISSN: | 1996-1073 | DOI: | 10.3390/en12060992 | Rights: | © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). The following publication Du, S., Li, M., Han, S., Shi, J., & Li, H. (2019). Multi-Pattern Data Mining and Recognition of Primary Electric Appliances from Single Non-Intrusive Load Monitoring Data. Energies, 12(6), 992 is available at https://doi.org/10.3390/en12060992  | 
| Appears in Collections: | Journal/Magazine Article | 
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Du_Multi-Pattern_Data_Mining.pdf | 2.03 MB | Adobe PDF | View/Open | 
Page views
235
			Last Week
			
16
		16
			Last month
			
						
					
					
						
							
						
						
					
							
					
								
		
	
			Citations as of Oct 5, 2025
		
	Downloads
119
			Citations as of Oct 5, 2025
		
	SCOPUSTM   
 Citations
		
		
		
		
		
				
		
		
		
			9
		
		
		
				
		
		
		
		
	
			Citations as of Oct 31, 2025
		
	WEB OF SCIENCETM
 Citations
		
		
		
		
		
				
		
		
		
			8
		
		
		
				
		
		
		
		
	
			Citations as of Oct 30, 2025
		
	
	Google ScholarTM
		
		
   		    Check
	Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



