Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/80718
Title: Distribution and speciation of copper in rice (Oryza sativa L.) from mining-impacted paddy soil : Implications for copper uptake mechanisms
Authors: Cui, JL 
Zhao, YP 
Lu, YJ
Chan, TS
Zhang, LL
Tsang, DCW 
Li, XD 
Keywords: Speciation and mobilization
Paddy soil
Heavy metal remediation
Tolerance and detoxification
Synchrotron-based X-ray absorption spectroscopy
Issue Date: 2019
Publisher: Pergamon Press
Source: Environment international, May 2019, v. 126, p. 717-726 How to cite?
Journal: Environment international 
Abstract: Long term mining activities can cause significant metal pollution in the environment, thereby showing potential risk to the paddy field. Elucidating the interfacial processes of trace metals from contaminated paddy soil to rice within the rhizosphere can provide important information on metal biogeochemistry and food safety. The current study aims to explore the spatial distribution and molecular speciation of Cu from rhizosphere to rice plant in a mining-impacted paddy soil, and reveal the possible uptake mechanisms. X-ray absorption near edge structure (XANES) analysis indicated that Cu was primarily associated with iron oxide and sulfide in soil with a minor proportion of organic complexed species. In the rice samples, Cu showed much higher concentrations in the roots than the shoots, as most Cu was sequestered in the root surface and epidermis (primarily in the form of C/N ligands bound Cu species), rather than root xylem, as identified by micro X-ray fluorescence (mu-XRF) imaging coupling with mu-XANES. By contrast, in the root xylem, thiol-S bound Cu(I) complex was observed, representing the reduced product of Cu(II) by thiol-S ligands in rice root. The absorbed Cu was probably transported from the root to the aerial part as C/N ligand bound Cu complex such as Cu-histidine like species, which was observed in the root xylem. The large retention capacity and reduction of Cu(II) in rice root alleviated Cu toxicity to rice, which was beneficial for food safety (e.g., lower concentration of Cu in rice grains). These findings showed for the first time that the uptake mechanisms by rice from field contaminated sites, which shed light on Cu detoxification process and potential remediation strategies.
URI: http://hdl.handle.net/10397/80718
ISSN: 0160-4120
DOI: 10.1016/j.envint.2019.02.045
Rights: © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).
The following publication Cui, J. L., Zhao, Y. P., Lu, Y. J., Chan, T. S., Zhang, L. L., Tsang, D. C., & Li, X. D. (2019). Distribution and speciation of copper in rice (Oryza sativa L.) from mining-impacted paddy soil: Implications for copper uptake mechanisms. Environment international, 126, 717-726 is available at https://dx.doi.org/10.1016/j.envint.2019.02.045
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Cui_Distribution_Speciation_Copper.pdf1.69 MBAdobe PDFView/Open
Access
View full-text via PolyU eLinks SFX Query
Show full item record
PIRA download icon_1.1View/Download Contents

Page view(s)

19
Citations as of Jul 16, 2019

Download(s)

12
Citations as of Jul 16, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.