Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/80251
Title: Earthquake prediction with meteorological data by particle filter-based support vector regression
Authors: Hajikhodaverdikhana, P
Nazari, M
Mohsenizadeh, M
Shamshirband, S
Chau, KW 
Keywords: Seismology
Support vector machine
Precursor
Particle filter
Issue Date: 2018
Publisher: Hong Kong Polytechnic University, Department of Civil and Structural Engineering
Source: Engineering applications of computational fluid mechanics, Sept. 2018, v. 12, no. 1, p. 679-688 How to cite?
Journal: Engineering applications of computational fluid mechanics 
Abstract: Prediction of earthquakes has been long of interest of scientists to create a timely warning to save lives and reduce the damage. During the last few decades, scientists could record and classify the earthquakes' effective parameters through careful studies. Precursor, as one of the most important parameters, presents the variation in the concentration of radon gas in the earth's crust released by faults. Measuring and comparing this precursor requires the installation of appropriate hardware in the vicinity of the faults. The extraction of this gas and its lead ions will create additional precursors in the atmosphere layers. Through intelligent analyzing such historical meteorological data sets which are being measured and recorded in most parts of the world, the earthquakes can be predicted. In order to predict the magnitude and number of the earthquakes in this study, the particle filter-based and support vector regression is used. To evaluate the validity of the proposed method, the results are compared with multi layered perceptron neural network and support vector regression. The proposed method indicated the relationship between climatic data and the occurrence of earthquake leading to a precision of 96% for predicting the mean magnitude of earthquakes and a high accuracy of 78% for the expected earthquake count in a month. The accuracy of the method was measured by the correlation coefficient index.
URI: http://hdl.handle.net/10397/80251
ISSN: 1994-2060
EISSN: 1997-003X
DOI: 10.1080/19942060.2018.1512010
Rights: © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The following publication Hajikhodaverdikhana, P., Nazari, M., Mohsenizadeh, M., Shamshirband, S., & Chau, K.W. (2018). Earthquake prediction with meteorological data by particle filter-based support vector regression. Engineering applications of computational fluid mechanics, 12 (1), 679-688 is available at https://dx.doi.org/10.1080/19942060.2018.1512010
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Hajikhodaverdikhana_Earthquake_Prediction_Meteorological.pdf2.25 MBAdobe PDFView/Open
Access
View full-text via PolyU eLinks SFX Query
Show full item record
PIRA download icon_1.1View/Download Contents

Page view(s)

1
Citations as of Feb 19, 2019

Download(s)

1
Citations as of Feb 19, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.